Python 教程之 Django(7)Django 模型

简介: Python 教程之 Django(7)Django 模型

Django模型是Django用于创建表,其字段和各种约束的内置功能。简而言之,Django模型是与Django一起使用的数据库的SQL。SQL(结构化查询语言)很复杂,涉及许多不同的查询,用于创建,删除,更新或与数据库相关的任何其他内容。Django模型简化了任务并将表格组织成模型。通常,每个模型都映射到单个数据库表。

本文将介绍如何使用Django模型方便地将数据存储在数据库中。此外,我们可以使用Django的管理面板来创建,更新,删除或检索模型的字段以及各种类似的操作。Django模型提供简单性,一致性,版本控制和高级元数据处理。模型的基础知识包括 –

  • 每个模型都是一个Python类,它子类化了django.db模型。
  • 模型的每个属性都表示一个数据库字段。
  • 有了所有这些,Django为您提供了一个自动生成的数据库访问API。

例–

from django.db import models
# 在此处创建模型。
class GeeksModel(models.Model):
  title = models.CharField(max_length = 200)
  description = models.TextField()

Django将Django模型中定义的字段映射到数据库的表字段中,如下所示。

image.png

使用 Django 模型

要使用Django模型,需要有一个项目和一个应用程序在其中工作。启动应用后,可以在应用/模型中创建模型.py。在开始使用模型之前,让我们检查一下如何启动项目并创建一个名为 geeks.py

创建模型

语法

arduino

from django.db import models
class ModelName(models.Model):
        field_name = models.Field(**options)

要创建模型,请在极客/模型中.py输入代码,

# 从内置库导入标准Django模型
from django.db import models
# 声明一个名为“GeeksModel”的新模型
class GeeksModel(models.Model):
    # 模型的字段
  title = models.CharField(max_length = 200)
  description = models.TextField()
  last_modified = models.DateTimeField(auto_now_add = True)
  img = models.ImageField(upload_to = "images/")
    # 用标题名称重命名模型实例
  def __str__(self):
    return self.title

每当我们创建模型,删除模型或更新项目 models.py 的任何内容时。我们需要运行两个命令进行迁移和迁移。makemigrations基本上为预安装的应用程序(可以在 settings.py 的已安装应用程序中查看)和新创建的应用程序模型生成SQL命令,而迁移则在数据库文件中执行这些SQL命令。

所以当我们运行时,

Python manage.py makemigrations

创建上述模型作为表的 SQL 查询,然后创建

Python manage.py migrate

在数据库中创建表。

现在我们已经创建了一个模型,我们可以执行各种操作,例如为表创建行或Django创建模型实例。  


目录
相关文章
|
5月前
|
机器学习/深度学习 数据采集 数据挖掘
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
190 2
|
4月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
802 19
|
3月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
156 1
|
4月前
|
机器学习/深度学习 数据采集 并行计算
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
429 2
|
4月前
|
数据采集 存储 JSON
使用Python获取1688商品详情的教程
本教程介绍如何使用Python爬取1688商品详情信息,涵盖环境配置、代码编写、数据处理及合法合规注意事项,助你快速掌握商品数据抓取与保存技巧。
|
4月前
|
算法 安全 新能源
基于DistFlow的含分布式电源配电网优化模型【IEEE39节点】(Python代码实现)
基于DistFlow的含分布式电源配电网优化模型【IEEE39节点】(Python代码实现)
359 0
|
5月前
|
机器学习/深度学习 算法 调度
【切负荷】计及切负荷和直流潮流(DC-OPF)风-火-储经济调度模型研究【IEEE24节点】(Python代码实现)
【切负荷】计及切负荷和直流潮流(DC-OPF)风-火-储经济调度模型研究【IEEE24节点】(Python代码实现)
245 0
|
5月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
354 0
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
791 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
898 4

推荐镜像

更多