【利用AI让知识体系化】3万多字让你&我快速入门数据结构与算法(二)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【利用AI让知识体系化】3万多字让你&我快速入门数据结构与算法

【利用AI让知识体系化】3万多字让你&我快速入门数据结构与算法(一)https://developer.aliyun.com/article/1426051


7.2 冒泡排序

冒泡排序是一种简单直观的排序算法,它重复地遍历数列,一次比较两个元素,如果它们的顺序错误就交换过来,直到没有相邻元素需要交换。因为在数列中较大的元素会逐渐向右边移动,像气泡一样冒泡到数列的右端,因此得名冒泡排序。

冒泡排序的具体实现如下:

  1. 从数列的第一个元素开始,对每一对相邻元素进行比较,如果顺序不正确则进行交换,这样最后的元素就是数列中的最大值。
  2. 对除了最后一个元素的所有元素进行相同的操作,直到没有任何一对数字需要比较,此时可得到一个有序数列。

冒泡排序算法的时间复杂度为O(n^2)。在实际应用中,尽管冒泡排序算法的时间复杂度较高,其实现简单,所以在一些简单的场景中,冒泡排序仍然被广泛使用。可以通过优化冒泡排序算法来提高其效率,例如加入一个标志位来记录是否发生过交换,如果没有交换说明数列已经有序,则可以提前结束算法。

下面是使用JavaScript实现冒泡排序算法的代码:

function bubbleSort(arr){
    var len = arr.length;
    for(var i = 0; i < len - 1; i++){
        for(var j = 0; j < len - 1 - i; j++){
            if(arr[j] > arr[j+1]){
                var temp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = temp;
            }
        }
    }
    return arr;
}

代码解析:

  1. 首先定义一个 bubbleSort 函数来实现冒泡排序算法;
  2. 获取数组 arr 的长度 len;
  3. 利用两层循环,外层循环控制循环的次数,内层循环进行相邻两个元素的比较;
  4. 如果相邻的两个元素顺序错误,则交换它们的位置;
  5. 每一轮内层循环结束后,最大的元素就会被放到了最后面;
  6. 当外层循环结束后,整个数组就被排序好了;
  7. 返回排序好的数组。

这段代码实现了冒泡排序算法,并对数组进行了升序排序。

7.3 选择排序

选择排序是一种简单直观的排序算法,它的基本思路是每次从待排序的数据元素中选出最小(或最大)的一个元素,存放在已排好序的数列的起始位置,直到全部待排序的数据元素排完。

选择排序的具体实现如下:

  1. 在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  2. 从剩余未排序元素中继续寻找最小(大)元素,重复步骤1,直到全部元素排序完成。

选择排序算法的时间复杂度为O(n^2)。在实际应用中,虽然选择排序算法的时间复杂度相对较高,但其实现简单,所以在一些大小规模较小的数据集上可以获得比较好的性能表现,同时它也是一种稳定的排序算法。但是在解决大规模问题时,排序效率会受到影响,所以需要选择其他更优化的排序算法来处理这类问题。

以下是选择排序的JS代码实现:

function selectionSort(arr) {
  var len = arr.length;
  for (var i = 0; i < len - 1; i++) {
    var minIndex = i;
    for (var j = i + 1; j < len; j++) {
      if (arr[j] < arr[minIndex]) {
        minIndex = j;
      }
    }
    if (minIndex !== i) {
      var temp = arr[i];
      arr[i] = arr[minIndex];
      arr[minIndex] = temp;
    }
  }
  return arr;
}

在这里,我们首先定义len为数组的长度,然后开始两个循环遍历数组。在外部循环中,我们定义一个minIndex,并将其设置为i,表示我们正在寻找最小值的位置。在内部循环中,我们检查minIndex所在的值是否比当前值更大。如果是,我们将minIndex设置为当前值的位置,以便在完成遍历后知道数组中最小值的位置。在内部循环结束后,我们检查minIndex是否等于i,如果不是,则交换arr[i]arr[minIndex]的值。最终,我们返回排序后的arr数组。

选择排序算法的时间复杂度为O(n²),这意味着对于大型数组,它的运行时间可能较长。

7.4 快速排序

快速排序是一种高效的排序算法,它的基本思路是通过分治法将数据序列拆分成两个子序列来排序。具体来说,选择一个基准元素,将序列中比基准元素小的所有元素放到基准元素的左边,将比基准元素大的所有元素放到基准元素的右边,再对左右子序列重复这个过程,直到每个子序列只有一个元素时排序完成。

快速排序的具体实现如下:

  1. 选取一个基准元素,一般为序列的第一个元素。
  2. 从序列左侧开始向右搜索,直到找到一个大于或等于基准元素的元素,记录该位置为左侧指针。
  3. 从序列右侧开始向左搜索,直到找到一个小于或等于基准元素的元素,记录该位置为右侧指针。
  4. 如果左侧指针位置小于右侧指针位置,交换左右指针位置对应的元素。
  5. 重复步骤2~4,直到左侧指针位置大于等于右侧指针位置,此时将基准元素放到左右指针交汇处,并返回该位置下标(作为子序列的分隔点)。
  6. 将整个排序序列被分隔点拆分成两个子序列,分别对两个子序列进行递归排序,直到整个序列有序。

快速排序算法的时间复杂度为O(nlogn)。在实际应用中,快速排序由于实现简易、效率高,成为了各类编程语言中的常用排序算法,但是它对于存在重复元素的数据集会导致频繁的递归以及不平衡的分布,因此会造成快排的性能下降,需要注意。

以下是快速排序的JS代码实现:

function quickSort(arr) {
  if (arr.length <= 1) {
    return arr;
  }
  var pivotIndex = Math.floor(arr.length / 2);
  var pivot = arr[pivotIndex];
  var left = [];
  var right = [];
  for (var i = 0; i < arr.length; i++) {
    if (i === pivotIndex) {
      continue;
    }
    if (arr[i] < pivot) {
      left.push(arr[i]);
    } else {
      right.push(arr[i]);
    }
  }
  return quickSort(left).concat([pivot], quickSort(right));
}

在这里,我们首先处理基本情况,当输入数组数量为1或更少时,我们只需返回原始数组。在这种情况下,基线条件旨在确保我们不会无限递归下去。

我们通过将数组的大小分成两半来找到一个中心点。中心点通常被称为“主元素”或“主元”,并用以划分数组。

在我们的实现中,我们采用数组的中心作为中心点,并将其存储在变量pivot中。我们创建两个数组,leftright,用于存储pivot左侧和右侧的元素。我们之后通过循环迭代整个数组,将小于pivot的元素放入left,否则将它们放入right

最后,我们通过递归对leftright子数组进行排序并将它们与pivot一起串联起来从而得到一个完整的排序数组。

快速排序算法的时间复杂度为O(n log n),效率比选择排序高。但是,在某些情况下,例如数组的大小非常小,或者数组已经几乎排序完成时,所选的主元素可能会导致算法的效率变为O(n²)。

7.5 归并排序

归并排序是一种基于分治思想的排序算法。它的基本思路是将待排序的序列分成若干个子序列,分别进行排序,最后将子序列合并成一个大的有序序列。

具体的实现过程如下:

  1. 将待排序的序列不断分成两个子序列,直到不能再分为止;
  2. 对分出的左右两个子序列进行归并排序,递归地使其有序;
  3. 对排好序的两个子序列合并成一个有序序列。

时间复杂度为O(nlogn),空间复杂度为O(n)。归并排序是稳定的排序算法,适用于大数据量的排序。

以下是归并排序的JS代码实现:

function merge(left, right) {
  var result = [];
  while (left.length && right.length) {
    if (left[0] <= right[0]) {
      result.push(left.shift());
    } else {
      result.push(right.shift());
    }
  }
  while (left.length) {
    result.push(left.shift());
  }
  while (right.length) {
    result.push(right.shift());
  }
  return result;
}
function mergeSort(arr) {
  if (arr.length <= 1) {
    return arr;
  }
  var middle = Math.floor(arr.length / 2);
  var left = arr.slice(0, middle);
  var right = arr.slice(middle);
  return merge(mergeSort(left), mergeSort(right));
}

在这里,我们首先定义了一个名为merge的函数,用于将两个已排序的数组合并为一个已排序的数组。我们在merge函数中创建一个result数组,并使用while循环迭代两个已排序数组中的元素。如果左侧数组的第一个元素小于或等于右侧数组的第一个元素,则将左侧数组的第一个元素移除并推入result数组中。否则,如果右侧数组的元素更小,则将其移除并推入result数组中。最后,我们返回已排序的result数组。

在我们的归并排序实现中,我们定义一个名为mergeSort的函数,该函数使用递归将输入数组拆分为单个元素数组。使用slice方法和Math.floor计算中心索引点,我们创建leftright子数组。由于我们需要确保我们在拆分子数组之前对其进行排序,因此我们对两个子数组进行递归调用并使用merge函数合并结果。最终,我们返回排序后的result数组。

归并排序算法的时间复杂度为O(n log n),因此与快速排序算法类似,其效率比选择排序高。归并排序算法在处理大型数据集时更有效,并且不会像快速排序算法那样变得不稳定。

7.6 堆排序

堆排序是一种基于完全二叉树的排序算法。它的基本思路是将待排序的序列转换成一个大根堆(或小根堆),然后将堆顶元素与末尾元素交换,再重新调整堆结构,不断进行这个过程直到整个序列有序为止。

具体的实现过程如下:

  1. 将待排序的序列构建成一个大根堆(或小根堆);
  2. 将堆顶元素与末尾元素交换,然后再调整堆结构,使其满足堆的性质;
  3. 重复步骤2,直到整个序列有序为止。

时间复杂度为O(nlogn),空间复杂度为O(1)。堆排序是一种不稳定的排序算法,适用于大数据量的排序。

以下是堆排序的JS代码实现:

function heapSort(arr) {
  var len = arr.length;
  for (var i = Math.floor(len / 2); i >= 0; i--) {
    heapify(arr, len, i);
  }
  for (var i = len - 1; i > 0; i--) {
    swap(arr, 0, i);
    len--;
    heapify(arr, len, 0);
  }
  return arr;
}
function heapify(arr, len, i) {
  var left = 2 * i + 1;
  var right = 2 * i + 2;
  var largest = i;
  if (left < len && arr[left] > arr[largest]) {
    largest = left;
  }
  if (right < len && arr[right] > arr[largest]) {
    largest = right;
  }
  if (largest !== i) {
    swap(arr, i, largest);
    heapify(arr, len, largest);
  }
}
function swap(arr, i, j) {
  var temp = arr[i];
  arr[i] = arr[j];
  arr[j] = temp;
}

在堆排序算法中,我们首先定义一个名为heapify的函数,该函数在堆中“下沉”一个节点,以便在创建排序堆时保持其最大堆性质。我们在函数中定义leftrightlargest变量,用于将节点的两个子节点和最大值进行比较。如果leftright的引用超出堆结构的边界,则不会进行比较。如果arr[left]arr[right]大于arr[largest],则将largest更新为leftright的值。最后,如果最大值是leftright而不是i本身,则我们要调用swap函数交换这2个位置的值,并递归调用heapify函数以确保此次修改后子堆仍然满足最大堆性质。

在我们的堆排序实现中,我们首先针对数组的前一半元素调用heapify函数,以便在初始堆中满足最大堆性质。之后执行第二个for循环,该循环遍历数组中每个元素。该循环中,我们首先使用swap函数将堆的根节点移动到当前数组的末尾,然后通过减少堆的长度和调用heapify函数将根节点下沉,以保持最大堆的性质。通过此逐步减小堆大小的过程来创建排好序的数组。

堆排序算法的时间复杂度为O(n log n),因此与快速排序算法和归并排序算法类似,其效率比选择排序高。但是,堆排序算法需要对输入数组本身进行就地修改,而不是返回新的排序数组。

7.7 排序算法的比较

常见的排序算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。

以下是各种排序算法的比较表:

算法名称 时间复杂度(平均情况下) 时间复杂度(最坏情况下) 时间复杂度(最好情况下) 空间复杂度 稳定性
冒泡排序(Bubble Sort) O(n²) O(n²) O(n) O(1) 稳定
选择排序(Selection Sort) O(n²) O(n²) O(n²) O(1) 不稳定
插入排序(Insertion Sort) O(n²) O(n²) O(n) O(1) 稳定
快速排序(Quick Sort) O(n log n) O(n²) O(n log n) O(log n) 不稳定
归并排序(Merge Sort) O(n log n) O(n log n) O(n log n) O(n) 稳定
堆排序(Heap Sort) O(n log n) O(n log n) O(n log n) O(1) 不稳定

在以上表中,每个算法的时间复杂度在不同情况下的表现可能不尽相同

对于每个算法,最好情况下的时间复杂度是指通过输入数据充分利用算法的优化方法时的时间。而最坏情况下的时间复杂度则表示无论输入数据如何都会得到糟糕的性能。平均情况下的时间复杂度代表在输入数据样本上运行时所需的平均时间成本。

“稳定性”指算法能否保持排序前由相等值组成元素之间的相对顺序。如果相等的元素在排序过程中始终保持在出现的顺序,则该算法被认为是稳定的。

需要注意的是,对于大多数排序算法,其空间复杂度都不依赖于输入数据的大小。而堆排序算法对于大型数据集而言具有空间优势,因为它能够就地排序而不需要额外的空间。

它们在数据结构、时间复杂度和空间复杂度等方面各有优缺点。

数据结构:

冒泡排序、选择排序、插入排序、希尔排序都是基于比较的排序算法,它们不需要额外的数据结构支持。

归并排序和堆排序是基于分治思想的排序算法,需要使用额外的数据结构(如归并排序中需要使用额外的空间存储临时排好序的序列,堆排序需要使用堆)。

快速排序是一种既基于比较又基于分治思想的排序算法,不需要额外的数据结构支持。

时间复杂度:

冒泡排序、选择排序、插入排序的时间复杂度都是O(n^2),不适用于大数据量的排序。

希尔排序的时间复杂度在最坏情况下是O(n^2),但在平均情况下,它比较快,时间复杂度为O(nlogn)

归并排序、堆排序、快速排序的时间复杂度都是O(nlogn)

空间复杂度:

冒泡排序、选择排序、插入排序、希尔排序的空间复杂度都是O(1),不需要额外的空间支持。

归并排序的空间复杂度为O(n),需要使用额外的空间存储临时排好序的序列。

堆排序的空间复杂度为O(1),但是堆的实现需要使用数组存储,会占用额外的空间。

快速排序的空间复杂度最坏情况下为O(n),平均情况下为O(logn)

总体来说,对于小数据量的排序,可以使用冒泡排序、选择排序、插入排序。对于中等规模的数据量,可以使用希尔排序、快速排序、堆排序。对于大规模数据的排序,可以使用归并排序。不同的排序算法在不同情况下各有优劣,需要根据具体情况选择合适的排序算法。

第八章:搜索算法

8.1 顺序搜索

顺序搜索,也称线性搜索,是一种简单的查找算法,它逐个对待搜索表中的记录进行比较,直到找到目标记录或搜索完整个表为止。

算法步骤如下:

  1. 从待搜索的序列的第一个记录开始,依次遍历每个记录,直到找到目标记录或者搜索完整个序列为止;
  2. 如果找到目标记录,则返回该记录在序列中的下标;
  3. 如果搜索完整个序列都没有找到目标记录,则返回“未找到”。

顺序搜索的时间复杂度为O(n),空间复杂度为O(1)。对于小规模的数据集,顺序搜索是一种比较简单有效的查找算法,但是对于大规模的数据集,它的时间复杂度过高,效率不高,此时应当选择更高效的查找算法,如二分查找。

8.2 二分搜索

二分搜索,也称折半搜索,是一种高效的查找算法,用于在有序数组中查找目标元素。

算法步骤如下:

  1. 确定待搜索数列的中间位置mid;
  2. 判断mid处的元素与目标元素的大小关系,并根据大小关系缩小搜索范围;
  3. 如果找到目标元素,则返回该元素在数列中的下标;
  4. 如果未找到目标元素,则重复步骤1~3。

代码实现(Python)如下:

def binary_search(nums, target):
    left, right = 0, len(nums) - 1
    while left <= right:
        mid = left + (right - left) // 2
        if nums[mid] == target:
            return mid
        elif nums[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    return -1  # 未找到
# 测试
nums = [1, 2, 3, 4, 5, 6, 7, 8, 9]
target = 5
print(binary_search(nums, target))  # 4

二分搜索的时间复杂度为O(log n),空间复杂度为O(1),它的效率比顺序搜索要高得多,因此适用于大规模数据的查找。但是,需要注意的是,二分搜索仅适用于有序数据集。如果数据集没有排序,则需要先进行排序操作,这可能会带来额外的时间复杂度。

8.3 哈希表

哈希表是一种基于散列表实现的数据结构,它通过哈希函数将每个键映射到一个索引(桶)上,并将对应的值存储在该桶中。通过哈希函数的快速定位,哈希表可以在O(1)的时间复杂度内进行查找、插入和删除等操作。

具体的实现过程如下:

  1. 定义一个哈希函数,将键映射到桶索引上;
  2. 初始化一个数组(哈希表),将每个桶初始化为空;
  3. 对于每个键值对,根据哈希函数得到对应的桶索引,然后将值存储在对应桶中;
  4. 对于查找操作,根据哈希函数得到键对应的桶索引,然后在对应桶中查找是否存在该键;
  5. 对于插入操作,根据哈希函数得到键对应的桶索引,然后插入键值对到对应桶中;
  6. 对于删除操作,根据哈希函数得到键对应的桶索引,然后在对应桶中删除该键值对。

哈希表的实现可以采用开放地址法和链表法两种方式。开放地址法通过线性探测、二次探测、双重散列等技术解决哈希冲突;链表法使用链表将哈希表中的每个桶组织成一个链表。

哈希表在空间利用率、平均时间复杂度和数据的动态性等方面都具有优点,因此被广泛应用于检索系统、缓存系统、数据库索引等。但是哈希表也存在一些缺点,例如哈希冲突、哈希函数的设计等方面需要考虑,否则会影响哈希表的性能。

8.4 搜索算法的比较

搜索算法有许多种,下面是几种常见的搜索算法的比较:

  1. 线性搜索算法(Sequential Search Algorithm):适用于小数据量的搜索,其时间复杂度为O(n)。每次从待搜索的列表中逐个比较元素,直到找到目标元素或者搜索列表已全部搜索完。
  2. 二分搜索算法(Binary Search Algorithm):适用于大数据量有序列表的搜索,其时间复杂度为O(log n)。每次从搜索列表的中间元素开始比较,如果中间元素不是目标元素,则根据大小关系选择左半部分或右半部分进行搜索,重复这个过程直到找到目标元素或者搜索区间为空。
  3. 广度优先搜索算法(Breadth-First Search Algorithm):适用于有向无环图的搜索,其时间复杂度为O(n+m),其中n为节点数,m为边数。从起始节点出发,通过广度优先依次遍历所有节点,直到找到目标节点或者搜索完成整个图。
  4. 深度优先搜索算法(Depth-First Search Algorithm):适用于有向无环图的搜索,其时间复杂度为O(n+m),其中n为节点数,m为边数。从起始节点出发,通过深度优先遍历所有可达节点,直到找到目标节点或者搜索完成整个图。
  5. A搜索算法(A*Search Algorithm):适用于带权有向图的搜索,可以找到最短路径。其时间复杂度与具体实现有关,最坏情况下为O(b^d),其中b为分支因子,d为最短路径长度。通过综合考虑实际代价和启发函数的估计代价,将搜索方向引向最有可能是最短路径的方向,从而提高搜索效率。

不同的搜索算法适用于不同的场景和问题,需要根据具体的需求选择合适的搜索算法。


【利用AI让知识体系化】3万多字让你&我快速入门数据结构与算法(三)https://developer.aliyun.com/article/1426053

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
4天前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
4天前
|
机器学习/深度学习 人工智能 监控
智慧交通AI算法解决方案
智慧交通AI算法方案针对交通拥堵、违法取证难等问题,通过AI技术实现交通管理的智能化。平台层整合多种AI能力,提供实时监控、违法识别等功能;展现层与应用层则通过一张图、路口态势研判等工具,提升交通管理效率。方案优势包括先进的算法、系统集成性和数据融合性,应用场景涵盖车辆检测、道路环境检测和道路行人检测等。
|
4天前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
智慧化工厂AI算法方案
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | AI 基石,无处不在的朴素贝叶斯算法
```markdown 探索贝叶斯定理:从默默无闻到AI基石。18世纪数学家贝叶斯的理论,初期未受重视,后成为20世纪机器学习、医学诊断和金融分析等领域关键。贝叶斯定理是智能背后的逻辑,朴素贝叶斯分类器在文本分类等应用中表现出色。贝叶斯网络则用于表示变量间条件依赖,常见于医学诊断和故障检测。贝叶斯推理通过更新信念以适应新证据,广泛应用于统计和AI。尽管有计算复杂性等局限,贝叶斯算法在小数据集和高不确定性场景中仍极具价值。了解并掌握这一算法,助你笑傲智能江湖! ```
57 2
算法金 | AI 基石,无处不在的朴素贝叶斯算法
|
1月前
|
缓存 算法 Java
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
这篇文章详细介绍了Java虚拟机(JVM)中的垃圾回收机制,包括垃圾的定义、垃圾回收算法、堆内存的逻辑分区、对象的内存分配和回收过程,以及不同垃圾回收器的工作原理和参数设置。
62 4
JVM知识体系学习六:JVM垃圾是什么、GC常用垃圾清除算法、堆内存逻辑分区、栈上分配、对象何时进入老年代、有关老年代新生代的两个问题、常见的垃圾回收器、CMS
|
4月前
|
机器学习/深度学习 人工智能 算法
「AI工程师」算法研发与优化-工作指导
**工作指导书摘要:** 设计与优化算法,提升性能效率;负责模型训练及测试,确保准确稳定;跟踪业界最新技术并应用;提供内部技术支持,解决使用问题。要求扎实的数学和机器学习基础,熟悉深度学习框架,具备良好编程及数据分析能力,注重团队协作。遵循代码、文档和测试规范,持续学习创新,优化算法以支持业务发展。
210 0
「AI工程师」算法研发与优化-工作指导
|
29天前
|
机器学习/深度学习 人工智能 算法
"拥抱AI规模化浪潮:从数据到算法,解锁未来无限可能,你准备好迎接这场技术革命了吗?"
【10月更文挑战第14天】本文探讨了AI规模化的重要性和挑战,涵盖数据、算法、算力和应用场景等方面。通过使用Python和TensorFlow的示例代码,展示了如何训练并应用一个基本的AI模型进行图像分类,强调了AI规模化在各行业的广泛应用前景。
29 5
|
1月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
79 1
|
1月前
|
人工智能 算法 前端开发
无界批发零售定义及无界AI算法,打破传统壁垒,累积数据流量
“无界批发与零售”是一种结合了批发与零售的商业模式,通过后端逻辑、数据库设计和前端用户界面实现。该模式支持用户注册、登录、商品管理、订单处理、批发与零售功能,并根据用户行为计算信用等级,确保交易安全与高效。
|
1月前
|
人工智能 算法 JavaScript
无界SaaS与AI算力算法,链接裂变万企万商万物互联
本文介绍了一种基于无界SaaS与AI算力算法的商业模式的技术实现方案,涵盖前端、后端、数据库及AI算法等关键部分。通过React.js构建用户界面,Node.js与Express搭建后端服务,MongoDB存储数据,TensorFlow实现AI功能。提供了项目结构、代码示例及部署建议,强调了安全性、可扩展性和性能优化的重要性。