Azure AI - Azure人脸识别任务概述与技术实战

本文涉及的产品
访问控制,不限时长
简介: Azure AI - Azure人脸识别任务概述与技术实战

Azure AI 人脸服务提供了可检测、识别和分析图像中的人脸的 AI 算法。 人脸识别软件在许多不同情形中都十分重要,例如识别、无接触访问控制和实现隐私的人脸模糊。你可以通过客户端库 SDK,或者直接调用 REST API 使用人脸服务。


一、人脸识别服务场景与任务概述

使用场景

验证用户标识:根据受信任的人脸图像验证人员。 此验证可用于授予对数字或物理财产的访问权限,如银行帐户、建筑物访问权限等。 在大多数情况下,受信任的人脸图像可能来自政府颁发的身份证件(如护照或驾照),也可以来自亲自拍摄的注册照片。 在验证期间,活体检测在验证图像是否来自真人而不是打印的照片或面具方面起着关键作用。

活体检测:活体检测是一种反欺骗功能,用于检查用户本人是否真实出现在相机前。 该功能用于防止使用打印的照片、视频或用户面部的 3D 面具进行欺骗攻击。

非接触式访问控制:与如今的卡片或票证等方法相比,选择性人脸识别能够增强访问控制体验,同时降低因卡片共享、丢失或盗窃而带来的卫生和安全风险。 人脸识别可以帮助在机场、体育场馆、主题公园、建筑物或者办公室、医院、健身房、俱乐部或学校的接待亭进行人工值机。

人脸编修:编辑或模糊视频中录制的检测到的人脸,以保护其隐私。

人脸检测和分析任务

在所有其他情况下,需要将人脸检测作为第一步。 检测 API 可以检测图像中的人脸,并返回其位置的矩形坐标。 它还返回一个表示存储的人脸数据的唯一 ID。 该 ID 将在以后的操作中用于识别或验证人脸。

人脸检测还可提取一组人脸相关属性,例如头部姿势、年龄、情绪、面部毛发和眼镜。 这些属性是一般预测,而不是实际分类。 某些属性可用于确保在用户将自己添加到人脸服务时,应用程序获得高质量的人脸数据。 例如,如果用户戴着太阳镜,应用程序可以建议用户取下太阳镜。

活体检测任务

人脸活体检测可用于确定输入视频流中的人脸是真实的(活的)还是虚假的(欺骗性的)。 这是生物特征身份验证系统中的一个重要组成部分,可防止冒名顶替者试图使用照片、视频、面具或其他方式冒充他人来访问系统,从而发动欺骗攻击。

活体检测的目标是确保系统在身份验证时与实际存在的活人进行交互。 随着数字金融、远程访问控制和在线身份验证流程的兴起,此类系统变得越来越重要。

活体检测解决方案可以成功防御各种欺骗类型,包括纸质打印输出、2D/3D 面具以及手机和笔记本电脑上的欺骗演示。 活体检测是一个活跃的研究领域,随着时间的推移,人们不断对其进行改进以应对日益复杂的欺骗攻击。 随着整体解决方案对新型攻击的防御变得越来越强大,我们也会不断向客户端和服务组件推出持续改进。

人脸识别任务

现代企业和应用可以使用人脸识别技术,包括人脸验证(“一对一”匹配)和人脸识别(“一对多”匹配)来确认用户身份。

标识

人脸识别可解决图像中一张人脸与安全存储库中一组人脸的“一对多”匹配问题。 根据其人脸数据与查询人脸的匹配程度,返回匹配候选项。 此方案用于向对某组人员授予建筑物或机场进出权限或验证设备的用户。

下图显示名为 "myfriends" 的数据库的示例。 每个组最多可以包含 100 万个不同的 person 对象。 每个人员对象可以注册最多 248 张人脸。

创建并训练一个组后,可以对组使用新检测到的人脸执行识别。 如果人脸被标识为组中的某一人员,则返回该人员对象。

验证

验证操作会回答问题“这两个人脸是否属于同一人?”。

验证也是将图像中的人脸与安全存储库或照片中的一张人脸进行“一对一”匹配,以验证他们是否是同一个人。 验证可用于访问控制,例如银行应用可让用户拍摄自己的新照片并将其与身份证件照片一起发送,以远程开立信用帐户。 还可用作标识 API 调用结果的最终检查。

查找相似人脸任务

查找相似人脸操作会在目标人脸和一组候选人脸之间进行人脸匹配,找出与目标人脸相似的一小组人脸。 这对于按图像进行人脸搜索很有用。

该服务支持两种工作模式:matchPerson 和 matchFace 。 使用验证 API 针对同一人进行筛选后,matchPerson 模式会返回相似人脸。 matchFace 模式会忽略同一人筛选器。 它返回相似候选人脸的列表,这些人脸不一定属于同一人。

以下示例显示了目标人脸:

这些图像是候选人脸:

为了查找四张相似人脸,matchPerson 模式会返回 A 和 B,它们与目标人脸显示的是同一个人。 matchFace 模式返回 A、B、C、D,恰好四个候选项,即使某些选项与目标不是同一人或者相似度低,也是如此。

对人脸分组任务

组操作会基于相似性将未知人脸的集合分为几个较小的组。 每个组是原始人脸集合的互不相交真子集。 它还返回单个“messyGroup”数组,其中包含未找到相似性的人脸 ID。

返回的一个组中的所有人脸可能属于同一人,但一个人可能有多个不同的组。 这些组按其他因素(例如表情)区分。

输入要求

常规图像输入要求:

  • 支持的输入图像格式为 JPEG、PNG、GIF(第一帧)和 BMP。
  • 图像文件不得大于 6 MB。

人脸检测输入要求:

  • 在不大于 1920 x 1080 像素的图像中,最小可检测人脸大小是 36 x 36 像素。 在大于 1920 x 1080 像素的图像中,最小人脸大小相应更大。 缩小人脸大小可能会导致无法检测到某些人脸,即便它们大于可检测的人脸大小下限。
  • 最大可检测人脸大小为 4096 x 4096 像素。
  • 大小在 36 x 36 至 4096 x 4096 像素大小范围之外的人脸将不会被检测到。

人脸识别输入要求:

  • 由于照片合成,某些人脸可能无法识别,例如:
  • 具有极端照明(例如严重的背光)的图像。
  • 有障碍物挡住了一只或两只眼睛。
  • 发型或胡须的差异。
  • 年龄使面貌发生变化。
  • 极端的面部表情。

二、人脸识别服务技术实战

环境准备

  • Azure 订阅 - 免费创建订阅
  • Visual Studio IDE 或最新版本的 .NET Core。
  • 你的 Azure 帐户必须分配有 Cognitive Services Contributor 角色,这样你才能同意负责任 AI 条款并创建资源。
  • 拥有 Azure 订阅后,请在 Azure 门户中创建人脸资源,以获取密钥和终结点。 部署后,选择”转到资源”。
  • 需要从创建的资源获取密钥和终结点,以便将应用程序连接到人脸 API。
  • 可以使用免费定价层 (F0) 试用该服务,然后再升级到付费层进行生产。

创建环境变量

在此示例中,将凭据写入运行应用程序的本地计算机上的环境变量。

转到 Azure 门户。 如果在“先决条件”部分创建的资源部署成功,请选择“后续步骤”下的“转到资源”。 在“密钥和终结点”页的“资源管理”下,可以找到密钥和终结点。 你的资源密钥与你的 Azure 订阅 ID 不同。

若要为密钥和终结点设置环境变量,请打开控制台窗口,并按照操作系统和开发环境的说明进行操作。

  1. 若要设置 VISION_KEY 环境变量,请将 your-key 替换为资源的其中一个密钥。
  2. 若要设置 VISION_ENDPOINT 环境变量,请将 your-endpoint 替换为资源的终结点。
  3. [Windows]
setx VISION_KEY your-key
  • [Linux]
setx VISION_ENDPOINT your-endpoint

添加环境变量后,可能需要重启任何正在运行的、将读取环境变量的程序(包括控制台窗口)。

  • [Windows]
export VISION_KEY=your-key
  • [Linux]
export VISION_ENDPOINT=your-endpoint

添加环境变量后,请从控制台窗口运行 source ~/.bashrc,使更改生效。

识别和验证人脸

  1. 安装客户端库
    在安装 Python 后,可以通过以下命令安装客户端库:
pip install --upgrade azure-cognitiveservices-vision-face
  1. 创建新的 Python 应用程序
    创建新的 Python 脚本,例如 quickstart-file.py。 然后在偏好的编辑器或 IDE 中打开它,并粘贴以下代码。
    ``` import asyncio import io import os import sys import time import uuid import requests from urllib.parse import urlparse from io import BytesIO
    To install this module, run:
    python -m pip install Pillow
    from PIL import Image, ImageDraw from azure.cognitiveservices.vision.face import FaceClient from msrest.authentication import CognitiveServicesCredentials from azure.cognitiveservices.vision.face.models import TrainingStatusType, Person, QualityForRecognition
# This key will serve all examples in this document.
KEY = os.environ["VISION_KEY"]
# This endpoint will be used in all examples in this quickstart.
ENDPOINT = os.environ["VISION_ENDPOINT"]
# Base url for the Verify and Facelist/Large Facelist operations
IMAGE_BASE_URL = 'https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/'
# Used in the Person Group Operations and Delete Person Group examples.
# You can call list_person_groups to print a list of preexisting PersonGroups.
# SOURCE_PERSON_GROUP_ID should be all lowercase and alphanumeric. For example, 'mygroupname' (dashes are OK).
PERSON_GROUP_ID = str(uuid.uuid4()) # assign a random ID (or name it anything)
# Used for the Delete Person Group example.
TARGET_PERSON_GROUP_ID = str(uuid.uuid4()) # assign a random ID (or name it anything)
# Create an authenticated FaceClient.
face_client = FaceClient(ENDPOINT, CognitiveServicesCredentials(KEY))
'''
Create the PersonGroup
'''
# Create empty Person Group. Person Group ID must be lower case, alphanumeric, and/or with '-', '_'.
print('Person group:', PERSON_GROUP_ID)
face_client.person_group.create(person_group_id=PERSON_GROUP_ID, name=PERSON_GROUP_ID, recognition_model='recognition_04')
# Define woman friend
woman = face_client.person_group_person.create(PERSON_GROUP_ID, name="Woman")
# Define man friend
man = face_client.person_group_person.create(PERSON_GROUP_ID, name="Man")
# Define child friend
child = face_client.person_group_person.create(PERSON_GROUP_ID, name="Child")
'''
Detect faces and register them to each person
'''
# Find all jpeg images of friends in working directory (TBD pull from web instead)
woman_images = ["https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Mom1.jpg", "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Mom2.jpg"]
man_images = ["https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Dad1.jpg", "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Dad2.jpg"]
child_images = ["https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Son1.jpg", "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/Family1-Son2.jpg"]
# Add to woman person
for image in woman_images:
    # Check if the image is of sufficent quality for recognition.
    sufficientQuality = True
    detected_faces = face_client.face.detect_with_url(url=image, detection_model='detection_03', recognition_model='recognition_04', return_face_attributes=['qualityForRecognition'])
    for face in detected_faces:
        if face.face_attributes.quality_for_recognition != QualityForRecognition.high:
            sufficientQuality = False
            break
        face_client.person_group_person.add_face_from_url(PERSON_GROUP_ID, woman.person_id, image)
        print("face {} added to person {}".format(face.face_id, woman.person_id))
    if not sufficientQuality: continue
# Add to man person
for image in man_images:
    # Check if the image is of sufficent quality for recognition.
    sufficientQuality = True
    detected_faces = face_client.face.detect_with_url(url=image, detection_model='detection_03', recognition_model='recognition_04', return_face_attributes=['qualityForRecognition'])
    for face in detected_faces:
        if face.face_attributes.quality_for_recognition != QualityForRecognition.high:
            sufficientQuality = False
            break
        face_client.person_group_person.add_face_from_url(PERSON_GROUP_ID, man.person_id, image)
        print("face {} added to person {}".format(face.face_id, man.person_id))
    if not sufficientQuality: continue
# Add to child person
for image in child_images:
    # Check if the image is of sufficent quality for recognition.
    sufficientQuality = True
    detected_faces = face_client.face.detect_with_url(url=image, detection_model='detection_03', recognition_model='recognition_04', return_face_attributes=['qualityForRecognition'])
    for face in detected_faces:
        if face.face_attributes.quality_for_recognition != QualityForRecognition.high:
            sufficientQuality = False
            print("{} has insufficient quality".format(face))
            break
        face_client.person_group_person.add_face_from_url(PERSON_GROUP_ID, child.person_id, image)
        print("face {} added to person {}".format(face.face_id, child.person_id))
    if not sufficientQuality: continue
'''
Train PersonGroup
'''
# Train the person group
print("pg resource is {}".format(PERSON_GROUP_ID))
rawresponse = face_client.person_group.train(PERSON_GROUP_ID, raw= True)
print(rawresponse)
while (True):
    training_status = face_client.person_group.get_training_status(PERSON_GROUP_ID)
    print("Training status: {}.".format(training_status.status))
    print()
    if (training_status.status is TrainingStatusType.succeeded):
        break
    elif (training_status.status is TrainingStatusType.failed):
        face_client.person_group.delete(person_group_id=PERSON_GROUP_ID)
        sys.exit('Training the person group has failed.')
    time.sleep(5)
'''
Identify a face against a defined PersonGroup
'''
# Group image for testing against
test_image = "https://raw.githubusercontent.com/Azure-Samples/cognitive-services-sample-data-files/master/Face/images/identification1.jpg"
print('Pausing for 10 seconds to avoid triggering rate limit on free account...')
time.sleep (10)
# Detect faces
face_ids = []
# We use detection model 3 to get better performance, recognition model 4 to support quality for recognition attribute.
faces = face_client.face.detect_with_url(test_image, detection_model='detection_03', recognition_model='recognition_04', return_face_attributes=['qualityForRecognition'])
for face in faces:
    # Only take the face if it is of sufficient quality.
    if face.face_attributes.quality_for_recognition == QualityForRecognition.high or face.face_attributes.quality_for_recognition == QualityForRecognition.medium:
        face_ids.append(face.face_id)
# Identify faces
results = face_client.face.identify(face_ids, PERSON_GROUP_ID)
print('Identifying faces in image')
if not results:
    print('No person identified in the person group')
for identifiedFace in results:
    if len(identifiedFace.candidates) > 0:
        print('Person is identified for face ID {} in image, with a confidence of {}.'.format(identifiedFace.face_id, identifiedFace.candidates[0].confidence)) # Get topmost confidence score
        # Verify faces
        verify_result = face_client.face.verify_face_to_person(identifiedFace.face_id, identifiedFace.candidates[0].person_id, PERSON_GROUP_ID)
        print('verification result: {}. confidence: {}'.format(verify_result.is_identical, verify_result.confidence))
    else:
        print('No person identified for face ID {} in image.'.format(identifiedFace.face_id))
print()
print('End of quickstart.')
```
  1. 使用 python 命令从应用程序目录运行人脸识别应用。
python quickstart-file.py

输出

Person group: c8e679eb-0b71-43b4-aa91-ab8200cae7df
face 861d769b-d014-40e8-8b4a-7fd3bc9b425b added to person f80c1cfa-b8cb-46f8-9f7f-e72fbe402bc3
face e3c356a4-1ac3-4c97-9219-14648997f195 added to person f80c1cfa-b8cb-46f8-9f7f-e72fbe402bc3
face f9119820-c374-4c4d-b795-96ae2fec5069 added to person be4084a7-0c7b-4cf9-9463-3756d2e28e17
face 67d626df-3f75-4801-9364-601b63c8296a added to person be4084a7-0c7b-4cf9-9463-3756d2e28e17
face 19e2e8cc-5029-4087-bca0-9f94588fb850 added to person 3ff07c65-6193-4d3e-bf18-d7c106393cd5
face dcc61e80-16b1-4241-ae3f-9721597bae4c added to person 3ff07c65-6193-4d3e-bf18-d7c106393cd5
pg resource is c8e679eb-0b71-43b4-aa91-ab8200cae7df
<msrest.pipeline.ClientRawResponse object at 0x00000240DAD47310>
Training status: running.
Training status: succeeded.
Pausing for 10 seconds to avoid triggering rate limit on free account...
Identifying faces in image
Person for face ID 40582995-d3a8-41c4-a9d1-d17ae6b46c5c is identified in image, with a confidence of 0.96725.
Person for face ID 7a0368a2-332c-4e7a-81c4-2db3d74c78c5 is identified in image, with a confidence of 0.96921.
No person identified for face ID c4a3dd28-ef2d-457e-81d1-a447344242c4 in image.
Person for face ID 360edf1a-1e8f-402d-aa96-1734d0c21c1c is identified in image, with a confidence of 0
相关实践学习
消息队列+Serverless+Tablestore:实现高弹性的电商订单系统
基于消息队列以及函数计算,快速部署一个高弹性的商品订单系统,能够应对抢购场景下的高并发情况。
云安全基础课 - 访问控制概述
课程大纲 课程目标和内容介绍视频时长 访问控制概述视频时长 身份标识和认证技术视频时长 授权机制视频时长 访问控制的常见攻击视频时长
目录
相关文章
|
1月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
85 6
|
23天前
|
存储 人工智能 分布式计算
Parquet 文件格式详解与实战 | AI应用开发
Parquet 是一种列式存储文件格式,专为大规模数据处理设计,广泛应用于 Hadoop 生态系统及其他大数据平台。本文介绍 Parquet 的特点和作用,并演示如何在 Python 中使用 Pandas 库生成和读取 Parquet 文件,包括环境准备、生成和读取文件的具体步骤。【10月更文挑战第13天】
175 60
|
22天前
|
人工智能 资源调度 数据可视化
【AI应用落地实战】智能文档处理本地部署——可视化文档解析前端TextIn ParseX实践
2024长沙·中国1024程序员节以“智能应用新生态”为主题,吸引了众多技术大咖。合合信息展示了“智能文档处理百宝箱”的三大工具:可视化文档解析前端TextIn ParseX、向量化acge-embedding模型和文档解析测评工具markdown_tester,助力智能文档处理与知识管理。
|
1月前
|
机器学习/深度学习 人工智能 开发框架
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
157 14
|
13天前
|
机器学习/深度学习 人工智能 算法
AI赋能大学计划·大模型技术与应用实战学生训练营——吉林大学站圆满结营
10月30日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·吉林大学站圆满结营。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【紧跟AI浪潮】深度剖析:如何在大模型时代精准捕获用户心声——提高召回率的实战秘籍
【10月更文挑战第5天】在深度学习领域,大型模型常面临召回率不足的问题,尤其在信息检索和推荐系统中尤为关键。本文通过具体代码示例,介绍如何提升大模型召回率。首先,利用Pandas进行数据预处理,如清洗和特征工程;其次,选择合适的模型架构,如使用PyTorch构建推荐系统;再者,优化训练策略,采用合适的损失函数及正则化技术;此外,选择恰当的评估指标,如召回率和F1分数;最后,通过后处理优化结果展示。以上方法不仅提升召回率,还增强了模型整体性能。
72 0
|
2月前
|
人工智能 C++
【Azure Developer】上手 The Best AI Code "Cursor" : 仅仅7次对话,制作个人页面原型,效果让人惊叹!
本文介绍了使用 Cursor 这款 AI 辅助编程工具的步骤与体验。通过下载安装 Cursor 并使用 GitHub 账号登录,你可以创建 HTML 文件并借助 AI 自动生成代码。文章详细描述了如何逐步优化生成的内容,包括调整布局、增加样式及响应式设计等。此外,还展示了通过多次迭代改进后的最终效果,并提供了生成的 HTML 模板代码,便于读者直接使用或进一步修改。
126 2
|
3月前
|
数据采集 人工智能 安全
AI大数据处理与分析实战--体育问卷分析
本文是关于使用AI进行大数据处理与分析的实战案例,详细记录了对深圳市义务教育阶段学校“每天一节体育课”网络问卷的分析过程,包括数据概览、交互Prompt、代码处理、年级和学校维度的深入分析,以及通过AI工具辅助得出的分析结果和结论。
|
3月前
|
人工智能
|
3月前
|
数据采集 人工智能 物联网
我们给大模型去掉了“AI味”-大模型微调全链路实战
本文档旨在概述使用ModelScope生态进行LLM训练的全链路最佳实践,涵盖数据下载、数据预处理、模型训练、模型评估完整流程。

热门文章

最新文章