工作流、数据集、模型一网打尽

简介: 揭开人工智能的面纱:工作流、数据集、模型一网打尽随着人工智能技术的飞速发展,越来越多的企业开始尝试运用AI来提升工作效率、优化业务流程。然而,对于AI的内部机制,许多人仍然感到神秘莫测。今天,就让我们来揭开AI的面纱,聊聊与AI密切相关的几个核心概念:工作流(Pipeline)、数据集(DataSet)和模型(Model)

揭开人工智能的面纱:工作流、数据集、模型一网打尽
随着人工智能技术的飞速发展,越来越多的企业开始尝试运用AI来提升工作效率、优化业务流程。然而,对于AI的内部机制,许多人仍然感到神秘莫测。今天,就让我们来揭开AI的面纱,聊聊与AI密切相关的几个核心概念:工作流(Pipeline)、数据集(DataSet)和模型(Model)。
首先,我们来聊聊工作流(Pipeline)。在AI领域,工作流是一个用于实现组件之间上下游逻辑调度的有向无环图(DAG)。它是一个静态概念,构建完成后,就可以对其进行重复提交运行,生成PipelineRun。而工作流草稿(PipelineDraft)则是您在Designer画布上操作的编辑状态的工作流对象,支持重复编辑以生成不同的Pipeline。
接下来,我们谈谈数据集(DataSet)。数据集是用于标注、训练、分析等的数据集合,可以存储在OSS、NAS、MaxCompute等存储介质中的结构化、非结构化数据或目录。同时,PAI支持统一管理数据集的存储、版本、数据结构等信息。
再来谈谈组件(Component)。组件是您在PAI工作流和工作流草稿中编辑以及工作流任务执行的最小单元。组件可以来源于预置组件(Built-in Component)和自定义组件(Custom Component)。
此外,我们还需要了解节点(Node)、工作流快照(SnapShot)、工作流任务(PipelineRun)和作业(Job)等概念。这些都是在AI工作流中不可或缺的组成部分。
最后,我们来聊聊模型(Model)。模型是您基于数据集和算法代码通过训练任务产出的结果,可以预测新数据。Processor则是在线预测逻辑(模型加载和请求预测逻辑)的程序包,通常与模型文件一起部署,从而获得模型服务。
总之,无论是工作流、数据集还是模型,都是AI技术的重要组成部分。理解这些概念,可以帮助我们更好地运用AI,实现业务的智能化升级。盛通教育AI助手,将为您提供全方位的技术支持,助您轻松踏入AI世界。

目录
相关文章
|
7月前
|
人工智能
一键生成视频!用 PAI-EAS 部署 AI 视频生成模型 SVD 工作流(清晰的实例)
用 PAI-EAS 部署 AI 视频生成模型 SVD 工作流(清晰的实例)
242 2
|
7月前
|
机器学习/深度学习 数据采集 监控
大模型开发:描述一个典型的机器学习项目流程。
机器学习项目涉及问题定义、数据收集、预处理、特征工程、模型选择、训练、评估、优化、部署和监控。每个阶段都是确保模型有效可靠的关键,需要细致操作。
85 0
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
机器学习模型的部署与上线:从训练到实际应用
在机器学习中,模型训练只是整个过程的一部分。将训练好的模型部署到实际应用中,并使其稳定运行,也是非常重要的。本文将介绍机器学习模型的部署与上线过程,包括数据处理、模型选择、部署环境搭建、模型调优等方面。同时,我们也会介绍一些实际应用场景,并分享一些经验和技巧。
|
9天前
|
机器学习/深度学习 数据采集 算法
监督学习工作流程:从数据准备到模型部署
本文详细介绍了监督学习的工作流程,涵盖数据准备、模型选择、训练、评估与优化、部署等关键步骤,并结合具体代码示例,帮助读者全面掌握监督学习在实际项目中的应用方法。从数据收集、清洗到特征工程,再到模型训练与评估,最后部署模型,每个环节都提供了详细的指导和实践建议。适合初学者和有一定基础的读者深入学习。
33 2
|
2月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
70 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
6月前
|
人工智能 Linux Docker
一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型(1)
近年来,大模型在AI领域崭露头角,成为技术创新的重要驱动力。从AlphaGo的胜利到GPT系列的推出,大模型展现出了强大的语言生成、理解和多任务处理能力,预示着智能化转型的新阶段。然而,要将大模型的潜力转化为实际生产力,需要克服理论到实践的鸿沟,实现从实验室到现实世界的落地应用。阿里云去年在云栖大会上发布了一系列基于通义大模型的创新应用,标志着大模型技术开始走向大规模商业化和产业化。这些应用展示了大模型在交通、电力、金融、政务、教育等多个行业的广阔应用前景,并揭示了构建具有行业特色的“行业大模型”这一趋势,大模型知识库概念随之诞生。
139767 30
|
7月前
|
机器学习/深度学习 Python
机器学习中的工作流机制
机器学习中的工作流机制
|
7月前
|
机器学习/深度学习 数据采集 算法
利用机器学习进行用户行为预测的技术解析
【5月更文挑战第17天】本文探讨了利用机器学习预测用户行为的技术,包括数据收集与处理、特征工程、模型选择与训练、评估预测。通过理解用户数据、提取有效特征,使用如RNN、LSTM等深度学习模型进行训练,评估模型性能后,可实现用户行为预测,助力企业决策,如个性化推荐和精准营销。随着技术发展,机器学习在该领域的应用将更加广泛。
|
7月前
|
机器学习/深度学习 分布式计算 监控
大模型开发:你如何使用大数据进行模型训练?
在大数据模型训练中,关键步骤包括数据准备(收集、清洗、特征工程、划分),硬件准备(分布式计算、并行训练),模型选择与配置,训练与优化,监控评估,以及模型的持久化与部署。过程中要关注数据隐私、安全及法规遵循,利用技术进步提升效率和性能。
784 2
|
7月前
|
人工智能
全方位解析PAI:数据准备、模型开发、模型训练一网打尽
全方位解析PAI:数据准备、模型开发、模型训练一网打尽 随着人工智能技术的飞速发展,越来越多的企业开始关注并投入到AI的研发中。然而,AI的研发并非易事,从数据准备、模型开发、模型训练到模型服务,每一个环节都需要专业的工具和平台来支持。阿里云的PAI(Powered by AI)正是一个涵盖了数据准备、模型开发、模型训练、模型服务全流程的AI工作平台。本文将为您详细介绍PAI的各个子产品的产品线上规格及使用指引。
169 2