前言
本文对websocket协议与参数进行详细的介绍,并基于reactor模型实现websocket服务器
本专栏知识点是通过零声教育的线上课学习,进行梳理总结写下文章,对c/c++linux课程感兴趣的读者,可以点击链接 C/C++后台高级服务器课程介绍 详细查看课程的服务。
websocket介绍
websocket是什么
websocket是基于tcp协议的应用层协议,也就是建立在tcp协议之上的自定义协议。这个协议比http协议更加的简单,因为websocket只对协议的格式做要求,只要符合数据格式就可以使用。
websocket一般用来服务器主动推送消息给客户端,反观HTTP,HTTP是请求响应的模式,客户端来一个请求,服务器响应一个请求,服务器无法主动发送数据给客户端;并且使用websocket,客户端和服务器只需要一次“握手”,两者之间就成功建立了长连接,可以双向传输数据。
现在有很多网站都有推送功能,比如现在有个人关注了我的CSDN号,或者给我点了赞,只要我这个浏览器在CSDN界面,就能立刻收到提醒,这就是推送功能,一般都是按照时间间隔轮询;如果我们使用HTTP去做的话,浏览器需要不断的向服务器发请求,而HTTP请求头又有很多无用数据,显而易见的是浪费带宽等资源。
而websocket不一样,websocket的开销很小,并且主要是由服务器主动推送消息给客户端,不再需要轮询了,所以实时性很高。
websocket的优点
总结一下websocket的优点:
- websocket协议简单
- 可以基于websocket自定义协议
- websocket一般用来服务器主动推送消息给客户端(实时性很高)
- 客户端和服务器建立连接只需要一次“握手”就可以保持长连接(开销很小)
websocket应用场景
举个登陆CSDN的例子:
- 用户选择微信扫码登陆,浏览器发送HTTP请求给CSDN服务器
- 服务器返回一个二维码给浏览器
- 用户通过微信扫码登陆
- 微信扫码成功,将消息传给微信服务器进行处理
- 微信服务器触发回调给CSDN服务器发一个通知
- CSDN服务器给浏览器发送一个websocket通知浏览器登陆成功
访客给我的文章点了个赞,我这里立刻收到提醒,可以看到这就是服务器主动推送消息给客户端,websocket的应用。
websocket协议剖析
握手协议
websocket握手是HTTP的GET请求的升级版,现在假设客户端连接服务器,服务器返回一次握手信息,连接即可建立,具体步骤如下:
- 客户端使用
ws://192.168.109.100:8081
连接服务器,实际上是采用HTTP的GET请求来进行握手
GET / HTTP/1.1 # 对端主机 Host: 192.168.109.100:8081 # 协议书升级 Connection: Upgrade Pragma: no-cache Cache-Control: no-cache User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36 # 升级的websocket Upgrade: websocket Origin: http://www.websocket-test.com # websocket版本号 Sec-WebSocket-Version: 13 Accept-Encoding: gzip, deflate Accept-Language: zh-CN,zh;q=0.9 # 客户端随机生成的一个16字节随机数,作为简单的认证标识 Sec-WebSocket-Key: 9jEz8msH1BBH9H43adEMZQ== Sec-WebSocket-Extensions: permessage-deflate; client_max_window_bits
- 服务器接收到对应的GET请求后,发现协议需要升级,返回响应,其中需要注意的是
Sec-WebSocket-Accept
# 101 表示切换协议 HTTP/1.1 101 Switching Protocols Upgrade: websocket Connection: Upgrade Sec-WebSocket-Accept: 9oFmMWgFISY8DBlo5xq1L1rc0+0=
Sec-WebSocket-Accept
Sec-WebSocket-Accept需要做3次计算得出,主要是为了验证客户端合法性。客户端收到服务器发来的响应后,同样会进行下面的操作,然后将收到的结果与自身算的结果进行对比,如果一样则说明合法,握手成功(WebSocket建立成功)。后续数据传输不再使用HTTP协议,而是使用websocket自定义的一套协议规范。
# GUID是websocket规定好的全局唯一的不变的字符串 #define GUID "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" # 将客户端发来的GET请求中的Sec-WebSocket字段的字符串与全局唯一的GUID拼接 1. key=Sec-WebSocket-Key+GUID # 对这个新字符串做SHA1运算,得到20B长的字符串sha_key 2. sha_key=SHA1(key) # 对sha_key做base64_encode编码,就能得到Sec-WebSocket-Accept了 3. sec_key=base64_encode(sha_key)
传输协议
写代码的时候只需要根据图中的协议来解析数据包即可,所以要将协议的情况分清楚。
参数介绍
- FIN:1bit,当FIN值为0的时候代表,消息还没完整,只是其中的一个数据包;当值为1的时候代表这段消息已经完全发送了。
- RSV 1 / 2 / 3:1bit,这个默认为 0 ,如果一定要启用,就得和服务端协商好,才具有意义。
- opcode:4bit,该数据包类型。
0 代表数据不完整,这只是其中的一个,不是最后的那个数据包。(Continuation Frame) 1 代表数据包内容的类型为 文本类型(Text Frame) 2 代表数据内容类型为 二进制类型 (Binary Frame) 8 代表连接断开 (Connection Close Frame) 9 和 10 是心跳检测,如果服务端发出 Ping Frame 那么客户端就得发回 Pong Frame ,如果服务端接受不到 Pong Frame 就代表客户端可能已经下线了。 0 - 15 中现在除了这 6 个,都为保留帧。
- MASK: 1bit,是否开启掩码。1开0关。如果开启了,下面的Masking-key就有意义了,一般是发送消息的数据包会开启,返回响应的数据包不开启,并且也没由Masking-key这4个bit。
// 如果Mask为1,则Payload Data 就需要通过 Mask 掩码解密(这里指接收消息) void umask(char *payload, int length, char *mask_key) { int i = 0; for (i = 0; i < length; i++) { payload[i] ^= mask_key[i % 4]; } }
- Payload len:7bit,内容数据(Payload Data)的长度
如果Payload len<126,则data len=Payload len 如果Payload len=126,则启用Extended payload length,多加了16bit,并且data len=Extended payload length 如果Payload len=127,则启用Extended payload length和Extended payload length continued,多加了16+48bit,并且data len=Extended payload length continued
- Masking-key:32bit,掩码数据,如果 Mask 为 1 就启用,否则不启用
- Payload Data:数据 0-127Byte,由上面3个如果决定大小
大白话
协议中前面2Byte固定存在,后面的 Extended payload length 这2Byte和 Extended payload length continued 这6Byte存不存在由 Payload len决定。
如果Payload len<126,则data len=Payload len 如果Payload len=126,则启用Extended payload length,多加了16bit,并且data len=Extended payload length 如果Payload len=127,则启用Extended payload length和Extended payload length continued,多加了16+48bit,并且data len=Extended payload length continued
如果MASK=1,则后面有4Byte的Masking-key,则MASK=0则没有这4Byte,再后面就是Payload Data了,多长就是前面Payload len的三种情况了。
websocket四问
websocket协议格式
websocket协议格式一共有两种:
- 一种是握手的GET请求
- 一种是数据传输协议格式
websocket如何验证客户端合法
Sec-WebSocket-Accept需要做3次计算得出,主要是为了验证客户端合法性。客户端收到服务器发来的响应后,同样会进行下面的操作,然后将收到的结果与自身算的结果进行对比,如果一样则说明合法,握手成功(WebSocket建立成功)。
# GUID是websocket规定好的全局唯一的不变的字符串 #define GUID "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" # 将客户端发来的GET请求中的Sec-WebSocket字段的字符串与全局唯一的GUID拼接 1. key=Sec-WebSocket-Key+GUID # 对这个新字符串做SHA1运算,得到20B长的字符串sha_key 2. sha_key=SHA1(key) # 对sha_key做base64_encode编码,就能得到Sec-WebSocket-Accept了 3. sec_key=base64_encode(sha_key)
明文与密文如何传输
使用参数 MASK: 1bit,是否开启掩码。1开0关。
- 如果是要发送密文,首先将MASK置1,然后将明文数据与Masking-key进行异或操作
- 如果是要解码成明文,将密文数据与Masking-key进行异或操作
- 如果是要发送明文,MASK置0即可
for (i = 0; i < length; i++) { payload[i] ^= mask_key[i % 4]; }
websocket如何断开
我们知道websocket是建立在TCP之上的,直接close不就好了吗,为什么还要规定opcode=8的时候代表断开连接呢?
客户端在调用close之前,先发送一个断开连接的包给服务器;服务器接收到这个包后,把对应的fd连接数据(相关联的用户数据,业务数据)做清空,然后再调用close断开TCP,这样就是优雅的断开连接,close流畅,不会出现大量的close_wait的情况
基于reactor模型的websocket服务器
握手代码介绍
websocket有3个状态,握手,传输与关闭。所以我们定义一个状态机。
在读完数据后,将数据交由 websocket_request(ev);管理;其会判断当前连接处于哪个状态,第一次就是握手状态;
handshake(ev);对GET请求解析出Sec-WebSocket-Key,然后计算Sec-WebSocket-Accept,组装响应。
这里就对着上面介绍的握手协议写代码即可
struct ntyevent { //...略 int state_machine; }; //state_machine enum { WS_HANDSHAKE = 0, WS_TRANSMISSION = 1, WS_END = 2 };
int websocket_request(struct ntyevent *ev) { if (ev->state_machine == WS_HANDSHAKE) { handshake(ev); ev->state_machine = WS_TRANSMISSION; } else if (ev->state_machine == WS_TRANSMISSION) { transmission(ev); } else { } } int recv_cb(int fd, int events, void *arg) { struct ntyreactor *reactor = (struct ntyreactor *) arg; struct ntyevent *ev = ntyreactor_find_event_idx(reactor, fd); memset(ev->buffer, 0, BUFFER_LENGTH); #if 0 long len = recv(fd, ev->buffer, BUFFER_LENGTH, 0); // #elif 1 int len = 0; int n = 0; while (1) { n = recv(fd, ev->buffer + len, BUFFER_LENGTH - len, 0); printf("[recv data len = %d]\n", n); if (n != -1) { len += n; } else { break; } } #endif nty_event_del(reactor->epfd, ev); printf("[recv buffer total len=%d]\n", len); printf("buffer:[%s]\n", ev->buffer); if (len > 0) { ev->length = len; ev->buffer[len] = '\0'; websocket_request(ev); nty_event_set(ev, fd, send_cb, reactor); nty_event_add(reactor->epfd, EPOLLOUT, ev); } else if (len == 0) { close(ev->fd); } else { close(ev->fd); } return len; }
int base64_encode(char *in_str, int in_len, char *out_str) { BIO *b64, *bio; BUF_MEM *bptr = NULL; size_t size = 0; if (in_str == NULL || out_str == NULL) return -1; b64 = BIO_new(BIO_f_base64()); bio = BIO_new(BIO_s_mem()); bio = BIO_push(b64, bio); BIO_write(bio, in_str, in_len); BIO_flush(bio); BIO_get_mem_ptr(bio, &bptr); memcpy(out_str, bptr->data, bptr->length); out_str[bptr->length - 1] = '\0'; size = bptr->length; BIO_free_all(bio); return size; } int readline(char *all_buffer, int idx, char *line_buffer) { int len = strlen(all_buffer); for (; idx < len; idx++) { if (all_buffer[idx] == '\r' && all_buffer[idx + 1] == '\n') { return idx + 2; } else { *(line_buffer++) = all_buffer[idx]; } } return -1; } int handshake(struct ntyevent *ev) { char line_buffer[1024] = {0}; char sha_key[32] = {0};//实际只需20B char sec_key[32] = {0};//实际只需28B int idx = 0; //找到Sec-WebSocket-Key这一行 while (!strstr(line_buffer, "Sec-WebSocket-Key")) { memset(line_buffer, 0, 1024); idx = readline(ev->buffer, idx, line_buffer); if (idx == -1)return -1; } //1. key=KEY+GUID //2. sha_key=SHA1(key) //3. sec_key=base64_encode(sha_key) strcpy(line_buffer, line_buffer + strlen("Sec-WebSocket-Key: ")); //1. key=KEY+GUID strcat(line_buffer, GUID); //2.sha_key = SHA1(key) SHA1(line_buffer, strlen(line_buffer), sha_key); //3. sec_key=base64_encode(sha_key) base64_encode(sha_key, strlen(sha_key), sec_key); //set head memset(ev->buffer, 0, BUFFER_LENGTH); ev->length = sprintf(ev->buffer, "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Accept: %s\r\n\r\n", sec_key); printf("[handshake response]\n%s\n", ev->buffer); return 0; }
传输代码介绍
transmission函数会调用decode_packet
对数据包进行解析,将有效数据长度和数据读取出来。
之后再调用encode_packet
对数据包进行封装回发回去(这里做的是echo)。
这里就对着上面介绍的传输协议写代码即可
//大端 typedef struct _ws_ophdr { unsigned char opcode: 4, rsv3: 1, rsv2: 1, rsv1: 1, fin: 1; unsigned char payload_len: 7, mask: 1; } ws_ophdr; typedef struct _ws_ophdr126 { unsigned short payload_len; char mask_key[4]; } ws_ophdr126; typedef struct _ws_ophdr127 { long long payload_len; char mask_key[4]; } ws_ophdr127; void umask(char *payload, int length, char *mask_key) { int i = 0; for (i = 0; i < length; i++) { payload[i] ^= mask_key[i % 4]; } } char *decode_packet(struct ntyevent *ev, int *real_len, int *virtual_len) { ws_ophdr *hdr = (ws_ophdr *) ev->buffer; printf("decode_packet fin:%d rsv1:%d rsv2:%d rsv3:%d opcode:%d mark:%d\n", hdr->fin, hdr->rsv1, hdr->rsv2, hdr->rsv3, hdr->opcode, hdr->mask); char *payload = NULL; *virtual_len = hdr->payload_len; if (hdr->opcode == 8) { ev->state_machine = WS_END; close(ev->fd); return NULL; } if (hdr->payload_len < 126) { payload = ev->buffer + sizeof(ws_ophdr) + 4; // 6 payload length < 126 if (hdr->mask) { umask(payload, hdr->payload_len, ev->buffer + 2); } *real_len = hdr->payload_len; } else if (hdr->payload_len == 126) { payload = ev->buffer + sizeof(ws_ophdr) + sizeof(ws_ophdr126); ws_ophdr126 *hdr126 = (ws_ophdr126 *) (ev->buffer + sizeof(ws_ophdr)); hdr126->payload_len = ntohs(hdr126->payload_len); if (hdr->mask) { umask(payload, hdr126->payload_len, hdr126->mask_key); } *real_len = hdr126->payload_len; } else if (hdr->payload_len == 127) { payload = ev->buffer + sizeof(ws_ophdr) + sizeof(ws_ophdr127); ws_ophdr127 *hdr127 = (ws_ophdr127 *) (ev->buffer + sizeof(ws_ophdr)); if (hdr->mask) { umask(payload, hdr127->payload_len, hdr127->mask_key); } *real_len = hdr127->payload_len; } printf("virtual len=%d real_len=%d\n", hdr->payload_len, *real_len); return payload; } int encode_packet(struct ntyevent *ev, int real_len, int virtual_len, char *buf) { ws_ophdr head = {0}; head.fin = 1; head.opcode = 1; head.payload_len = virtual_len; memcpy(ev->buffer, &head, sizeof(ws_ophdr)); int head_offset = 0; if (virtual_len < 126) { head.payload_len = real_len; head_offset = sizeof(ws_ophdr); } else if (virtual_len == 126) { ws_ophdr126 hdr126 = {0}; hdr126.payload_len = htons(real_len); memcpy(ev->buffer + sizeof(ws_ophdr), &hdr126, sizeof(unsigned short));//返回不需要mask,中间去掉4B head_offset = sizeof(ws_ophdr) + sizeof(unsigned short); } else if (virtual_len == 127) { ws_ophdr127 hdr127 = {0}; hdr127.payload_len = real_len; memcpy(ev->buffer + sizeof(ws_ophdr), &hdr127, sizeof(long long));//返回不需要mask,中间去掉4B head_offset = sizeof(ws_ophdr) + sizeof(long long); } printf("encode_packet fin:%d rsv1:%d rsv2:%d rsv3:%d opcode:%d mark:%d \n", head.fin, head.rsv1, head.rsv2, head.rsv3, head.opcode, head.mask); memcpy(ev->buffer + head_offset, buf, real_len); return head_offset + real_len;//头+payload } int transmission(struct ntyevent *ev) { char *payload_buffer = NULL; int real_len = 0, virtual_len; payload_buffer = decode_packet(ev, &real_len, &virtual_len); printf("real_len=[%d] , buf=[%s]\n", real_len, payload_buffer); ev->length = encode_packet(ev, real_len, virtual_len, payload_buffer); }
程序运行测试结果
完整代码
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <sys/epoll.h> #include <arpa/inet.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include <openssl/sha.h> #include <openssl/pem.h> #include <openssl/bio.h> #include <openssl/evp.h> #define BUFFER_LENGTH 4096 #define MAX_EPOLL_EVENTS 1024 #define SERVER_PORT 8081 #define PORT_COUNT 100 #define GUID "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" typedef int (*NCALLBACK)(int, int, void *); struct ntyevent { int fd; int events; void *arg; NCALLBACK callback; int status; char buffer[BUFFER_LENGTH]; int length; int state_machine; }; //state_machine enum { WS_HANDSHAKE = 0, WS_TRANSMISSION = 1, WS_END = 2 }; struct eventblock { struct eventblock *next; struct ntyevent *events; }; struct ntyreactor { int epfd; int blkcnt; struct eventblock *evblk; }; int recv_cb(int fd, int events, void *arg); int send_cb(int fd, int events, void *arg); struct ntyevent *ntyreactor_find_event_idx(struct ntyreactor *reactor, int sockfd); void nty_event_set(struct ntyevent *ev, int fd, NCALLBACK callback, void *arg) { ev->fd = fd; ev->callback = callback; ev->events = 0; ev->arg = arg; } int nty_event_add(int epfd, int events, struct ntyevent *ev) { struct epoll_event ep_ev = {0, {0}}; ep_ev.data.ptr = ev; ep_ev.events = ev->events = events; int op; if (ev->status == 1) { op = EPOLL_CTL_MOD; } else { op = EPOLL_CTL_ADD; ev->status = 1; } if (epoll_ctl(epfd, op, ev->fd, &ep_ev) < 0) { printf("event add failed [fd=%d], events[%d]\n", ev->fd, events); return -1; } return 0; } int nty_event_del(int epfd, struct ntyevent *ev) { struct epoll_event ep_ev = {0, {0}}; if (ev->status != 1) { return -1; } ep_ev.data.ptr = ev; ev->status = 0; epoll_ctl(epfd, EPOLL_CTL_DEL, ev->fd, &ep_ev); return 0; } int base64_encode(char *in_str, int in_len, char *out_str) { BIO *b64, *bio; BUF_MEM *bptr = NULL; size_t size = 0; if (in_str == NULL || out_str == NULL) return -1; b64 = BIO_new(BIO_f_base64()); bio = BIO_new(BIO_s_mem()); bio = BIO_push(b64, bio); BIO_write(bio, in_str, in_len); BIO_flush(bio); BIO_get_mem_ptr(bio, &bptr); memcpy(out_str, bptr->data, bptr->length); out_str[bptr->length - 1] = '\0'; size = bptr->length; BIO_free_all(bio); return size; } int readline(char *all_buffer, int idx, char *line_buffer) { int len = strlen(all_buffer); for (; idx < len; idx++) { if (all_buffer[idx] == '\r' && all_buffer[idx + 1] == '\n') { return idx + 2; } else { *(line_buffer++) = all_buffer[idx]; } } return -1; } int handshake(struct ntyevent *ev) { char line_buffer[1024] = {0}; char sha_key[32] = {0};//实际只需20B char sec_key[32] = {0};//实际只需28B int idx = 0; //找到Sec-WebSocket-Key这一行 while (!strstr(line_buffer, "Sec-WebSocket-Key")) { memset(line_buffer, 0, 1024); idx = readline(ev->buffer, idx, line_buffer); if (idx == -1)return -1; } //1. key=KEY+GUID //2. sha_key=SHA1(key) //3. sec_key=base64_encode(sha_key) strcpy(line_buffer, line_buffer + strlen("Sec-WebSocket-Key: ")); //1. key=KEY+GUID strcat(line_buffer, GUID); //2.sha_key = SHA1(key) SHA1(line_buffer, strlen(line_buffer), sha_key); //3. sec_key=base64_encode(sha_key) base64_encode(sha_key, strlen(sha_key), sec_key); //set head memset(ev->buffer, 0, BUFFER_LENGTH); ev->length = sprintf(ev->buffer, "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Accept: %s\r\n\r\n", sec_key); printf("[handshake response]\n%s\n", ev->buffer); return 0; } //暂时的小端 typedef struct _ws_ophdr { unsigned char opcode: 4, rsv3: 1, rsv2: 1, rsv1: 1, fin: 1; unsigned char payload_len: 7, mask: 1; } ws_ophdr; typedef struct _ws_ophdr126 { unsigned short payload_len; char mask_key[4]; } ws_ophdr126; typedef struct _ws_ophdr127 { long long payload_len; char mask_key[4]; } ws_ophdr127; void umask(char *payload, int length, char *mask_key) { int i = 0; for (i = 0; i < length; i++) { payload[i] ^= mask_key[i % 4]; } } char *decode_packet(struct ntyevent *ev, int *real_len, int *virtual_len) { ws_ophdr *hdr = (ws_ophdr *) ev->buffer; printf("decode_packet fin:%d rsv1:%d rsv2:%d rsv3:%d opcode:%d mark:%d\n", hdr->fin, hdr->rsv1, hdr->rsv2, hdr->rsv3, hdr->opcode, hdr->mask); char *payload = NULL; *virtual_len = hdr->payload_len; if (hdr->opcode == 8) { ev->state_machine = WS_END; close(ev->fd); return NULL; } if (hdr->payload_len < 126) { payload = ev->buffer + sizeof(ws_ophdr) + 4; // 6 payload length < 126 if (hdr->mask) { umask(payload, hdr->payload_len, ev->buffer + 2); } *real_len = hdr->payload_len; } else if (hdr->payload_len == 126) { payload = ev->buffer + sizeof(ws_ophdr) + sizeof(ws_ophdr126); ws_ophdr126 *hdr126 = (ws_ophdr126 *) (ev->buffer + sizeof(ws_ophdr)); hdr126->payload_len = ntohs(hdr126->payload_len); if (hdr->mask) { umask(payload, hdr126->payload_len, hdr126->mask_key); } *real_len = hdr126->payload_len; } else if (hdr->payload_len == 127) { payload = ev->buffer + sizeof(ws_ophdr) + sizeof(ws_ophdr127); ws_ophdr127 *hdr127 = (ws_ophdr127 *) (ev->buffer + sizeof(ws_ophdr)); if (hdr->mask) { umask(payload, hdr127->payload_len, hdr127->mask_key); } *real_len = hdr127->payload_len; } printf("virtual len=%d real_len=%d\n", hdr->payload_len, *real_len); return payload; } int encode_packet(struct ntyevent *ev, int real_len, int virtual_len, char *buf) { ws_ophdr head = {0}; head.fin = 1; head.opcode = 1; head.payload_len = virtual_len; memcpy(ev->buffer, &head, sizeof(ws_ophdr)); int head_offset = 0; if (virtual_len < 126) { head.payload_len = real_len; head_offset = sizeof(ws_ophdr); } else if (virtual_len == 126) { ws_ophdr126 hdr126 = {0}; hdr126.payload_len = htons(real_len); memcpy(ev->buffer + sizeof(ws_ophdr), &hdr126, sizeof(unsigned short));//返回不需要mask,中间去掉4B head_offset = sizeof(ws_ophdr) + sizeof(unsigned short); } else if (virtual_len == 127) { ws_ophdr127 hdr127 = {0}; hdr127.payload_len = real_len; memcpy(ev->buffer + sizeof(ws_ophdr), &hdr127, sizeof(long long));//返回不需要mask,中间去掉4B head_offset = sizeof(ws_ophdr) + sizeof(long long); } printf("encode_packet fin:%d rsv1:%d rsv2:%d rsv3:%d opcode:%d mark:%d \n", head.fin, head.rsv1, head.rsv2, head.rsv3, head.opcode, head.mask); memcpy(ev->buffer + head_offset, buf, real_len); return head_offset + real_len;//头+payload } int transmission(struct ntyevent *ev) { char *payload_buffer = NULL; int real_len = 0, virtual_len; payload_buffer = decode_packet(ev, &real_len, &virtual_len); printf("real_len=[%d] , buf=[%s]\n", real_len, payload_buffer); ev->length = encode_packet(ev, real_len, virtual_len, payload_buffer); } int websocket_request(struct ntyevent *ev) { if (ev->state_machine == WS_HANDSHAKE) { handshake(ev); ev->state_machine = WS_TRANSMISSION; } else if (ev->state_machine == WS_TRANSMISSION) { transmission(ev); } else { } } int recv_cb(int fd, int events, void *arg) { struct ntyreactor *reactor = (struct ntyreactor *) arg; struct ntyevent *ev = ntyreactor_find_event_idx(reactor, fd); memset(ev->buffer, 0, BUFFER_LENGTH); #if 0 long len = recv(fd, ev->buffer, BUFFER_LENGTH, 0); // #elif 1 int len = 0; int n = 0; while (1) { n = recv(fd, ev->buffer + len, BUFFER_LENGTH - len, 0); printf("[recv data len = %d]\n", n); if (n != -1) { len += n; } else { break; } } #endif nty_event_del(reactor->epfd, ev); printf("[recv buffer total len=%d]\n", len); printf("buffer:[%s]\n", ev->buffer); if (len > 0) { ev->length = len; ev->buffer[len] = '\0'; websocket_request(ev); nty_event_set(ev, fd, send_cb, reactor); nty_event_add(reactor->epfd, EPOLLOUT, ev); } else if (len == 0) { close(ev->fd); } else { close(ev->fd); } return len; } int send_cb(int fd, int events, void *arg) { struct ntyreactor *reactor = (struct ntyreactor *) arg; struct ntyevent *ev = ntyreactor_find_event_idx(reactor, fd); printf("[send buffer]\n%s\n", ev->buffer); int len = send(fd, ev->buffer, ev->length, 0); if (len > 0) { nty_event_del(reactor->epfd, ev); nty_event_set(ev, fd, recv_cb, reactor); nty_event_add(reactor->epfd, EPOLLIN, ev); } else { nty_event_del(reactor->epfd, ev); close(ev->fd); } return len; } int accept_cb(int fd, int events, void *arg) {//非阻塞 struct ntyreactor *reactor = (struct ntyreactor *) arg; if (reactor == NULL) return -1; struct sockaddr_in client_addr; socklen_t len = sizeof(client_addr); int clientfd; if ((clientfd = accept(fd, (struct sockaddr *) &client_addr, &len)) == -1) { printf("accept: %s\n", strerror(errno)); return -1; } if ((fcntl(clientfd, F_SETFL, O_NONBLOCK)) < 0) { printf("%s: fcntl nonblocking failed, %d\n", __func__, MAX_EPOLL_EVENTS); return -1; } struct ntyevent *event = ntyreactor_find_event_idx(reactor, clientfd); nty_event_set(event, clientfd, recv_cb, reactor); event->status = WS_HANDSHAKE; nty_event_add(reactor->epfd, EPOLLIN, event); printf("new connect [%s:%d], pos[%d]\n", inet_ntoa(client_addr.sin_addr), ntohs(client_addr.sin_port), clientfd); return 0; } int init_sock(short port) { int fd = socket(AF_INET, SOCK_STREAM, 0); fcntl(fd, F_SETFL, O_NONBLOCK); struct sockaddr_in server_addr; memset(&server_addr, 0, sizeof(server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_addr.s_addr = htonl(INADDR_ANY); server_addr.sin_port = htons(port); bind(fd, (struct sockaddr *) &server_addr, sizeof(server_addr)); if (listen(fd, 20) < 0) { printf("listen failed : %s\n", strerror(errno)); } return fd; } int ntyreactor_alloc(struct ntyreactor *reactor) { if (reactor == NULL) return -1; if (reactor->evblk == NULL) return -1; struct eventblock *blk = reactor->evblk; while (blk->next != NULL) { blk = blk->next; } struct ntyevent *evs = (struct ntyevent *) malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent)); if (evs == NULL) { printf("ntyreactor_alloc ntyevents failed\n"); return -2; } memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent)); struct eventblock *block = (struct eventblock *) malloc(sizeof(struct eventblock)); if (block == NULL) { printf("ntyreactor_alloc eventblock failed\n"); return -2; } memset(block, 0, sizeof(struct eventblock)); block->events = evs; block->next = NULL; blk->next = block; reactor->blkcnt++; // return 0; } struct ntyevent *ntyreactor_find_event_idx(struct ntyreactor *reactor, int sockfd) { int blkidx = sockfd / MAX_EPOLL_EVENTS; while (blkidx >= reactor->blkcnt) { ntyreactor_alloc(reactor); } int i = 0; struct eventblock *blk = reactor->evblk; while (i++ < blkidx && blk != NULL) { blk = blk->next; } return &blk->events[sockfd % MAX_EPOLL_EVENTS]; } int ntyreactor_init(struct ntyreactor *reactor) { if (reactor == NULL) return -1; memset(reactor, 0, sizeof(struct ntyreactor)); reactor->epfd = epoll_create(1); if (reactor->epfd <= 0) { printf("create epfd in %s err %s\n", __func__, strerror(errno)); return -2; } struct ntyevent *evs = (struct ntyevent *) malloc((MAX_EPOLL_EVENTS) * sizeof(struct ntyevent)); if (evs == NULL) { printf("ntyreactor_alloc ntyevents failed\n"); return -2; } memset(evs, 0, (MAX_EPOLL_EVENTS) * sizeof(struct ntyevent)); struct eventblock *block = (struct eventblock *) malloc(sizeof(struct eventblock)); if (block == NULL) { printf("ntyreactor_alloc eventblock failed\n"); return -2; } memset(block, 0, sizeof(struct eventblock)); block->events = evs; block->next = NULL; reactor->evblk = block; reactor->blkcnt = 1; return 0; } int ntyreactor_destory(struct ntyreactor *reactor) { close(reactor->epfd); //free(reactor->events); struct eventblock *blk = reactor->evblk; struct eventblock *blk_next = NULL; while (blk != NULL) { blk_next = blk->next; free(blk->events); free(blk); blk = blk_next; } return 0; } int ntyreactor_addlistener(struct ntyreactor *reactor, int sockfd, NCALLBACK *acceptor) { if (reactor == NULL) return -1; if (reactor->evblk == NULL) return -1; struct ntyevent *event = ntyreactor_find_event_idx(reactor, sockfd); nty_event_set(event, sockfd, acceptor, reactor); nty_event_add(reactor->epfd, EPOLLIN, event); return 0; } _Noreturn int ntyreactor_run(struct ntyreactor *reactor) { if (reactor == NULL) return -1; if (reactor->epfd < 0) return -1; if (reactor->evblk == NULL) return -1; struct epoll_event events[MAX_EPOLL_EVENTS + 1]; int i; while (1) { int nready = epoll_wait(reactor->epfd, events, MAX_EPOLL_EVENTS, 1000); if (nready < 0) { printf("epoll_wait error, exit\n"); continue; } for (i = 0; i < nready; i++) { struct ntyevent *ev = (struct ntyevent *) events[i].data.ptr; if ((events[i].events & EPOLLIN) && (ev->events & EPOLLIN)) { ev->callback(ev->fd, events[i].events, ev->arg); } if ((events[i].events & EPOLLOUT) && (ev->events & EPOLLOUT)) { ev->callback(ev->fd, events[i].events, ev->arg); } } } } // <remoteip, remoteport, localip, localport,protocol> int main(int argc, char *argv[]) { unsigned short port = SERVER_PORT; // listen 8081 if (argc == 2) { port = atoi(argv[1]); } struct ntyreactor *reactor = (struct ntyreactor *) malloc(sizeof(struct ntyreactor)); ntyreactor_init(reactor); int i = 0; int sockfds[PORT_COUNT] = {0}; for (i = 0; i < PORT_COUNT; i++) { sockfds[i] = init_sock(port + i); ntyreactor_addlistener(reactor, sockfds[i], accept_cb); } ntyreactor_run(reactor); ntyreactor_destory(reactor); for (i = 0; i < PORT_COUNT; i++) { close(sockfds[i]); } free(reactor); return 0; }