【深度学习】Pytorch Tensor 张量

简介: 【1月更文挑战第10天】【深度学习】Pytorch Tensor 张量

目录

一、张量概述:

二、初始化张量:

直接使用Python列表转化为张量:

通过Numpy数组(ndarray)转换为张量:

通过已有的张量生成新的张量:

通过指定数据维度生成张量:

三、张量属性:

四、张量的运算:

1.张量的索引和切片:

2.张量的拼接:

3.张量的乘法和矩阵乘法:

乘法(点乘):

矩阵乘法(叉乘):

4.自动赋值运算:

五、Tensor和Numpy的相互转换:

1.由tensor转换为ndarray:

2.由Ndarray转换为Tensor:

     现在是凌晨12点,记录一下学习,重新复习一下Pytorch......好吧,其实也不算复习,之前也只是简单的了解了一下,仅此而已。但是!现在不一样,需要仔细的去学习!

    Let‘s do it !!!

    这只是一篇简单的学习笔记,仅此而已!!!

一、张量概述:
一种特殊的数据结构,使用在深度学习的神经网络中,类似数组(多维度)和矩阵。神经网络的输入输出、网格参数都是使用张量来进行描述!

import torch
import numpy as np
二、初始化张量:
张量的初始化方式有多种,主要是根据数据来源选择不同的初始化方法:

直接使用Python列表转化为张量:
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
使用torch库中的函数tensor将一个二维python列表转换为一个二维的张量。

通过Numpy数组(ndarray)转换为张量:
ndarray和张量(tensor)之间是支持相互转换的

np_array = np.array(data)
x_np = torch.from_numpy(np_array)
通过已有的张量生成新的张量:
新的张量将会继承原有张量的数据属性(结构和类型),也可以重新指定新的数据属性。

x_ones = torch.ones_like(x_data) # 保留 x_data 的属性
print(f"Ones Tensor: \n {x_ones} \n")

x_rand = torch.rand_like(x_data, dtype=torch.float) # 重写 x_data 的数据类型int -> float
print(f"Random Tensor: \n {x_rand} \n")
Ones Tensor:
tensor([[1, 1],
[1, 1]])

Random Tensor:
tensor([[0.0381, 0.5780],
[0.3963, 0.0840]])
通过指定数据维度生成张量:
使用shape元组指定生成的张量维度,将元组传递给torch函数创建不同的张量:

shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)

print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
Random Tensor:
tensor([[0.0266, 0.0553, 0.9843],
[0.0398, 0.8964, 0.3457]])

Ones Tensor:
tensor([[1., 1., 1.],
[1., 1., 1.]])

Zeros Tensor:
tensor([[0., 0., 0.],
[0., 0., 0.]])
三、张量属性:
通过张量的不同属性,可以知道张量的维度,张量的数据类型、张量的存储设备(物理设备)

tensor = torch.rand(3,4)

print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
Shape of tensor: torch.Size([3, 4]) # 维数
Datatype of tensor: torch.float32 # 数据类型
Device tensor is stored on: cpu # 存储设备
四、张量的运算:
检查当前运行环境是否支持Pytorch,检查代码:

判断当前环境GPU是否可用, 然后将tensor导入GPU内运行

if torch.cuda.is_available():
tensor = tensor.to('cuda')
1.张量的索引和切片:
Python的切片,第一个参数是行操作,第二个参数是列操作。

tensor = torch.ones(4, 4)
tensor[:,1] = 0 # 将第1列(从0开始)的数据全部赋值为0
print(tensor)
所有的索引位置都是从0开始:

tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
2.张量的拼接:
你可以通过torch.cat方法将一组张量按照指定的维度进行拼接, 也可以参考torch.stack方法。

t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
注意这里的dim参数,这里是指定tensor拼接的维度,维度索引同样是从0开始,0表示第一维,1表示第二维,所以拼接在二维的情况是按照列拼接:

tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])
想知道有几个维度,数出有几层中括号就行,有几层中括号就有几维。而且,随着中括号由外向里走,维度依次增加:从 0 变为 1 变为 2。

3.张量的乘法和矩阵乘法:
简单区分一下乘法和矩阵乘法的区别:

乘法:在矩阵上是两个shape相同的矩阵(就是需要满足矩阵的形状一致),对应位置上的元素相乘
矩阵乘法:要求矩阵内联的维度一致,即(n,m)x (m,z)
乘法(点乘):

逐个元素相乘结果

print(f"tensor.mul(tensor): \n {tensor.mul(tensor)} \n")

等价写法:

print(f"tensor tensor: \n {tensor tensor}")
tensor.mul(tensor):
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])

tensor * tensor:
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])
矩阵乘法(叉乘):
print(f"tensor.matmul(tensor.T): \n {tensor.matmul(tensor.T)} \n")

等价写法:

print(f"tensor @ tensor.T: \n {tensor @ tensor.T}")
tensor.matmul(tensor.T):
tensor([[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])

tensor @ tensor.T:
tensor([[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.],
[3., 3., 3., 3.]])
4.自动赋值运算:
自动赋值运算通常在方法后有 作为后缀, 例如: x.copy(y), x.t_()操作会改变 x 的取值。即将方法调用执行的结果重新赋值给调用方法的变量。

print(tensor, "\n")
tensor.add_(5)
print(tensor)
tensor([[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.],
[1., 0., 1., 1.]])

tensor([[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.],
[6., 5., 6., 6.]])
注意:自动赋值运算虽然可以节省内存, 但在求导时会因为丢失了中间过程而导致一些问题, 所以我们并不鼓励使用它。

五、Tensor和Numpy的相互转换:
张量和ndarray数组在CPU上可以共用一块内存区域,改变其中一个值,另一个也会发生改变。

1.由tensor转换为ndarray:
tensor直接调用numpy方法:

t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]
此时,如果修改张量tensor的值,那么对应的ndarray中的值也会发生改变,这里只是变量类型的改变,但是变量指向的内存地址是同一个内存空间:

t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]
2.由Ndarray转换为Tensor:
n = np.ones(5)
t = torch.from_numpy(n)
修改Numpy array数组的值,则张量值也会随之改变。

np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]

相关文章
|
7天前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
15 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
15天前
|
机器学习/深度学习 数据挖掘 PyTorch
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
踏入深度学习领域,即使是编程新手也能借助PyTorch这一强大工具,轻松解锁高级数据分析。PyTorch以简洁的API、动态计算图及灵活性著称,成为众多学者与工程师的首选。本文将带你从零开始,通过环境搭建、构建基础神经网络到进阶数据分析应用,逐步掌握PyTorch的核心技能。从安装配置到编写简单张量运算,再到实现神经网络模型,最后应用于图像分类等复杂任务,每个环节都配有示例代码,助你快速上手。实践出真知,不断尝试和调试将使你更深入地理解这些概念,开启深度学习之旅。
20 1
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
深度学习领域中pytorch、onnx和ncnn的关系
PyTorch、ONNX 和 NCNN 是深度学习领域中的三个重要工具或框架,它们在模型开发、转换和部署过程中扮演着不同但相互关联的角色。
62 11
|
17天前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
38 0
|
26天前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
46 0
|
2月前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
44 0
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习框架之争:全面解析TensorFlow与PyTorch在功能、易用性和适用场景上的比较,帮助你选择最适合项目的框架
【8月更文挑战第31天】在深度学习领域,选择合适的框架至关重要。本文通过开发图像识别系统的案例,对比了TensorFlow和PyTorch两大主流框架。TensorFlow由Google开发,功能强大,支持多种设备,适合大型项目和工业部署;PyTorch则由Facebook推出,强调灵活性和速度,尤其适用于研究和快速原型开发。通过具体示例代码展示各自特点,并分析其适用场景,帮助读者根据项目需求和个人偏好做出明智选择。
36 0
|
7天前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
3天前
|
机器学习/深度学习 算法 算法框架/工具
深度学习在图像识别中的应用及代码示例
【9月更文挑战第32天】本文将深入探讨深度学习在图像识别领域的应用,包括其原理、技术、优势以及挑战。我们将通过一个简单的代码示例,展示如何使用深度学习技术进行图像识别。无论你是初学者还是有经验的开发者,都可以从中获得启发和帮助。让我们一起探索这个充满无限可能的领域吧!
16 8
|
1天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习在图像识别中的应用与挑战
【9月更文挑战第34天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。特别是在图像识别领域,深度学习模型如卷积神经网络(CNN)已展现出惊人的性能。本文将深入探讨深度学习在图像识别领域的应用,分析其面临的主要挑战,并分享一些实用的编程技巧。无论你是深度学习的初学者还是资深开发者,这篇文章都将为你提供宝贵的知识和技能。

相关实验场景

更多
下一篇
无影云桌面