最短路之SPFA算法

简介: 最短路之SPFA算法

存储图的方式(1.链式向前星2.二维数组)

链式向前星

适用范围

给定的图存在负权边,这时类似Dijkstra等算法就不能用了

算法思想

我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

实现方法

建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列为空。  

首先建立起始点a到其余各点的

最短路径表格

首先源点a入队,当队列非空时:

 1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:

在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点

需要入队,此时,队列中新入队了三个结点b,c,d

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:

在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要

入队,此时队列中的元素为c,d,e

队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:

在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此

e不用入队了,f要入队,此时队列中的元素为d,e,f

队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:

在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e

队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:

在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:

在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b

队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:

在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了

最终a到g的最短路径为14

SPFA算法模板

1

#include<iostream>
#include<algorithm>
#include<queue>
#define MAXN 100000
#define INF 0x3f3f3f3f
using namespace std;
struct edge {
  int to;      //边的终点
  int next;    //上一条边的标号
  int w;       //边权
} E[MAXN];
int cnt=0;
int head[MAXN];
int d[MAXN];
bool vis[MAXN];
void add(int u,int v,int w) { //链式向前星
  E[cnt].to=v;
  E[cnt].w=w;
  E[cnt].next=head[u];
  head[u]=cnt++;
}
void init() {
  for(int i=0; i<MAXN; i++) {
    d[i]=INF;
    vis[i]=0;
    head[i]=-1;
  }
  cnt=0;
}
void SPFA(int s) {//以s为源 
  d[s]=0;
  vis[s]=1;
  queue<int> q;
  q.push(s);
  while(!q.empty()) {
    int u=q.front();
    q.pop();
    vis[u]=0;
    for(int i=head[u]; i!=-1; i=E[i].next) {
      int v=E[i].to;
      int w=E[i].w;
      if(d[v]>d[u]+w) {
        d[v]=d[u]+w;
        if(!vis[v]) {
          vis[v]=1;
          q.push(v);
        }
      }
    }
  }
}
int main(){
  for(int i=1;i<=11;i++){
    int u,v,w;
    cin>>u>>v>>w;
    add(u,v,w);//存图u起点,v终点,w权
  }
  SPFA(1);//以1为源,自行更改
  for(int i=1;d[i]!=INF;i++){
    cout<<d[i]<<endl;
  }
} 

2

#include<iostream>
#include<queue>
#include<string.h>
#define MAXN 1000
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
int d[MAXN],vis[MAXN],a[MAXN][MAXN];
void SPFA(int s) {
  for(int i=0; i<MAXN; i++) {
    d[i]=INF;
    vis[i]=0;
  }
  d[s]=0;
  vis[s]=1;
  queue<int>ac;
  ac.push(s);
  while(!ac.empty()) {
    int actop=ac.front();
    ac.pop();
    vis[actop]=0;
    for(int i=1; i<=n; i++) {
      if(d[i]>d[actop]+a[actop][i]  && a[actop][i]!=0) {//如果有负的这里特判a[actop][i]!=xxxx
        d[i]=d[actop]+a[actop][i];
        if(vis[i]==0) {
          ac.push(i);
          vis[i]=1;
        }
      }
    }
  }
}
int main() {
  cin>>n>>m;
  for(int i=1; i<=m; i++) {
    int a1,b,c;
    cin>>a1>>b>>c;
    a[a1][b]=c;
  }
  SPFA(1);
  for(int i=1; i<=n; i++)
    cout<<d[i]<<endl;
}


目录
相关文章
|
6月前
|
算法
最短路之Floyd算法
最短路之Floyd算法
75 1
|
6月前
|
算法 Java C语言
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-5 算法训练 最短路
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-5 算法训练 最短路
39 0
|
6月前
|
算法
最短路之Dijkstra算法
最短路之Dijkstra算法
57 0
|
6月前
|
算法
class065 A星、Floyd、Bellman-Ford与SPFA【算法】
class065 A星、Floyd、Bellman-Ford与SPFA【算法】
47 0
|
6月前
|
算法
讲课:拓扑排序、最短路算法
讲课:拓扑排序、最短路算法
|
28天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
14天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。