智能AI机器人管家

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 应用场景:四层别墅,每层面积1000平+,有自己的地下停车场,地下酒窖,阳光房,花园,广场。在此场景下想做一个智能机器人管家。主要功能:1、自动跟随制定的人,可以根据设定的人的语音指令做一些动作,比如:停下、充电、倒退、去某个地方等等。2、可以根据设定的人的语音回答一些常见问题,比如:今天天气,股票走势,黄金走势,钢铁走势等能够从网上直接获取到的信息。3、可以根据设定的人的语音回答一些本地问题,比如家里还有多少酒,调一下某地的监控,花房的温度多少,打开某房间的空调。4、可以帮助做一些本企业决策性的问题。

我是个初入职场的员工,首次接触智能AI领域,经过2023年井喷式发展,我觉得类似于电影中的机器人管家是有可能在现实中实现的,以下是我对打造智能机器人管家的一些看法,欢迎大家讨论、补充。

硬件部分:

基础平台构建:

设计和制造机器人的移动底盘,包含驱动马达、轮子或履带等实现自主导航和跟随功能。
安装高精度摄像头(如深度相机)以支持视觉追踪和环境感知。
配备多个普通摄像头作为安防监控使用,并确保能360度无死角覆盖。
嵌入各类传感器,包括但不限于温度、湿度、光照、红外线人体感应器等,用于监测家居环境。
大屏幕设备选用并集成,可能需要触屏功能以便交互。

核心计算单元:

选择一款性能强大的嵌入式主板或者小型计算机,例如Raspberry Pi、Jetson Nano或其他专为机器人设计的处理器板卡,满足实时处理视频流、语音识别及决策算法的需求。

电源系统:

设计合理的电池管理系统,保证机器人有足够续航能力,并支持自动充电功能。

音频模块:

集成麦克风阵列和扬声器,实现高质量的语音输入输出。

智能家居接口:

制作能够控制家庭内其他智能设备的硬件接口,比如通过Wi-Fi、蓝牙或Zigbee等方式连接空调、灯光、酒柜等智能家电。

软件部分:

操作系统:

选择适合机器人操作系统的版本,如Ubuntu或专门针对嵌入式设备的操作系统。

视觉与跟随算法开发:
开发或使用现有的视觉跟踪算法,使其能够识别并跟随指定的人。

语音识别与语音合成:
使用开源或商业的语音识别API(如Google Assistant SDK, Amazon Alexa, Microsoft Azure Cognitive Services等)来处理用户的语音指令。

信息获取与处理:

编写软件模块从网络公开数据。
对私密信息进行加密传输和处理,整合家庭内部传感器数据,如监控画面、酒柜库存、花房温湿度等。

决策引擎:

构建基于规则或机器学习模型的决策引擎,帮助用户在特定场景下做出合理决策,比如根据室内温度和主人习惯调整空调设定。

智能家居控制系统:

开发或接入现成的智能家居控制平台API,使机器人能够远程操控家中的智能设备。

以下是一些可能使用到的大模型类型及其训练方法:

语音识别:

可以考虑使用预训练的自动语音识别(ASR)模型,如阿里云的DeepSpeech、Google的Wav2Vec 2.0或阿里云的基于Transformer架构的语音识别模型。这些模型通常提供API接口或者SDK供开发者调用,如果需要定制化训练,则需收集特定语境下的语音数据,并根据原始模型进行迁移学习或微调。
自然语言理解与生成:

对于回答常见问题和私密问题,可以利用预训练的大型语言模型,例如阿里云的大规模语言模型M6、GPT-4(假设已有更新版本可用)或其他开源模型如BERT、T5等。您需要通过API调用获取结果或对模型进行进一步训练,使其适应家庭环境下的问答需求。对于私密问题,确保数据安全的前提下,在本地服务器或云端进行专用数据集训练。

决策性问题解答:

虽然现有的大模型可以处理一些简单的决策问题,但对于复杂的决策支持,可能需要构建具有领域知识的专业模型。这可能涉及到强化学习算法和专家系统的设计,训练时将结合实际业务规则和从历史决策案例中学习的经验。

计算机视觉与跟随功能:

对于视觉跟踪和自主导航,可以采用深度学习框架中的目标检测和追踪算法,比如YOLO系列模型、DeepSORT等,配合SLAM(Simultaneous Localization and Mapping)技术实现定位和路径规划。这些模型也需要大量标注过的图像或视频数据进行训练。

训练自己的模型步骤:

数据准备:首先收集各类任务所需的数据,包括语音指令样本、文本问答数据、视觉跟踪和导航所需的图像/视频资料等。
数据预处理:清洗数据,对其进行格式转换、标准化、去噪、分割成训练集、验证集和测试集等。
模型选择与搭建:根据具体任务选取合适的预训练模型作为基础,并在相关框架上搭建模型结构。
微调与训练:使用预训练模型的基础上,加载自有的训练数据进行微调。调整模型参数,设置优化器、损失函数和训练轮次等,执行训练过程。
模型评估与优化:在验证集上评估模型性能,根据结果调整模型参数或网络结构,反复迭代优化直至达到满意的效果。
部署与集成:训练完成后,将模型部署到机器人硬件平台上,整合各个模块的功能,确保在真实环境下稳定运行。
由于训练大模型通常需要大量的计算资源和专业知识,建议您也可以考虑直接调用现成的云服务接口,或者在拥有足够资源的情况下,在云平台上租用GPU集群进行训练。同时,针对隐私保护和安全性要求较高的部分,务必遵守相关法律法规,采取必要的加密和脱敏措施。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
5天前
|
机器学习/深度学习 人工智能 供应链
让AI真正懂生产的工业智能体长啥样?一个评测告诉你答案
本文探讨了工业互联网平台与大模型技术融合的趋势,重点介绍卡奥斯COSMOPlat平台。该平台通过智能体应用构建,提升生产效率、优化流程并降低开发成本。文章还分析了工业大模型在知识引擎、智能应用开发等方面的应用价值,并通过案例展示其在设备管理、供应链优化中的成效。随着政策推动和市场需求增长,“人工智能+工业互联网”模式正加速产业升级,为工业企业提供新生产力工具,助力数字化转型与智能化发展。
47 5
让AI真正懂生产的工业智能体长啥样?一个评测告诉你答案
|
11天前
|
人工智能 自然语言处理 算法
阿里云 AI 搜索开放平台:从算法到业务——AI 搜索驱动企业智能化升级
本文介绍了阿里云 AI 搜索开放平台的技术的特点及其在各行业的应用。
|
5天前
|
人工智能 自然语言处理 JavaScript
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
Magnitude是一个基于视觉AI代理的开源端到端测试框架,通过自然语言构建测试用例,结合推理代理和视觉代理实现智能化的Web应用测试,支持本地运行和CI/CD集成。
89 15
测试工程师要失业?Magnitude:开源AI Agent驱动的端到端测试框架,让Web测试更智能,自动完善测试用例!
|
3天前
|
人工智能 算法 IDE
通义灵码:以AI重塑开发者生产力,解锁智能编程新范式
通义灵码是阿里云推出的一款AI智能编程助手,基于通义大模型打造,深度集成于主流IDE。它不仅提供全场景智能代码生成、对话式开发体验和工程化智能重构等功能,还通过百亿级参数大模型底座、企业级环境适配、私有化部署等优势,重新定义人机协作边界。在真实开发场景中,通义灵码显著提升API开发与算法优化效率,助力开发者从机械劳动转向创造性对话,开启人机协同的新时代。
43 9
|
3天前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
30 8
|
10天前
|
机器学习/深度学习 人工智能 运维
AI为网络可靠性加“稳”——从断网烦恼到智能运维
AI为网络可靠性加“稳”——从断网烦恼到智能运维
68 2
|
1天前
|
传感器 人工智能 搜索推荐
只靠一个头,能做出被“可爱攻击”的AI智能宠物吗?
本文探讨了AI实体化的一个具体方向——AI智能宠物,尤其是仅靠“一个头”设计的可行性与潜力。相比复杂的人形机器人,头部AI宠物成本更低、技术门槛更小,且能聚焦语言和表情交互,打造情感连接。文章分析了AI宠物的市场机遇,如满足孤独经济需求、成为消费电子新趋势,并指出“可爱”只是入场券,真正留住用户的在于深度交互体验。最后强调,精准洞察用户需求是关键,避免陷入“有趣但无用”的陷阱,为AI实体化找到切实可行的商业化路径。
|
29天前
|
人工智能 自然语言处理 机器人
9.9K star!大模型原生即时通信机器人平台,这个开源项目让AI对话更智能!
"😎高稳定、🧩支持插件、🦄多模态 - 大模型原生即时通信机器人平台"
|
20天前
|
人工智能 自然语言处理 安全
Deepseek 的 “灵魂”,宇树的 “躯体”,智能机器人还缺一个 “万万不能”
法思诺创新探讨智能机器人产业的发展,指出Deepseek的AI“灵魂”与宇树的机器人“躯体”虽技术先进,但缺乏关键的商业模式。文章分析了两者在硬件和软件领域的困境,并提出通过软硬一体化结合及明确商业模式,才能实现真正实用的智能机器人。未来,需聚焦高频刚需场景、优化付费体验、推动技术创新,让智能机器人走进千家万户。法思诺提供相关课程与咨询服务,助力行业突破。
|
20天前
|
传感器 机器学习/深度学习 人工智能
自己都站不稳,怎么护理人?智能机器人的自主平衡问题,用TRIZ和DeepSeek有解吗?
法思诺创新探讨机器人自主平衡难题,结合TRIZ创新理论与DeepSeek大模型,为仿人机器人动态平衡提供解决方案。文章分析了机器人平衡差的原因,包括复杂环境、传感器限制、算法难度和机械设计挑战等,并提出通过TRIZ原理(如矛盾识别、理想解)与DeepSeek的AI能力(如数据学习、强化学习)协同优化平衡性能。展望未来,2024-2028年将实现从实验室验证到家用场景落地,推动消费级人形机器人发展。

热门文章

最新文章