【获奖名单公示】Hologres实时湖仓分析挑战赛

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 5分钟快速使用Hologres实时湖仓能力,无需移动数据,直接加速读取存储于数据湖OSS上的Hudi、Delta、Paimon等格式类型的数据

获奖名单公示:

以下为本次活动获奖名单,奖品将在春节后寄出,其他用户不符合参赛规则。

用户昵称 奖项
携手健康之路 挑战奖
闻天下 挑战奖
陌然浅笑-支 挑战奖
游客x7hkshkejsduy 挑战奖
五谷不分 挑战奖
6c5hhy6vxniui 挑战奖
长梦 挑战奖
不游泳的鱼鱼 挑战奖
打不哭 挑战奖
神秘海盗 挑战奖
zxlstart 一等奖
mayiyou 二等奖
zt123 二等奖
ccku 二等奖

5分钟快速使用Hologres实时湖仓能力,无需移动数据,直接加速读取存储于数据湖OSS上的Hudi、Delta、Paimon等格式类型的数据

活动地址:https://developer.aliyun.com/topic/hologres/dlf

挑战奖:小米充电宝15个,非教程代码执行SQL,完成运行速度对比

一等奖:LAMY钢笔1个,作品点赞数位列第1名,且点赞数≥20个

二等奖:小米背包20个,作品点赞数位列第2-21名,且点赞数≥10个

参与奖:社区积分,每位参赛者可获得社区100积分

image.png

准备工作

本文以上海地域为例开通OSS、DLF和Hologres服务。

  1. 开通OSS服务并准备测试数据。
  1. 打开OSS开通页面,按照界面指引完成开通操作。说明
  1. 登录OSS管理控制台,创建存储空间(Bucket)。具体操作,请参见控制台快速入门

image.png

  1. 上传tpch_10g_orc_3.zip测试数据至Bucket目录。
  • 测试数据文件上传后,若存在.DS_Store等文件需手动删除。
  • 考虑到下载速度,这里仅包含本文需要的nation_orc、supplier_orc、partsupp_orc数据表。


  1. 开通DLF服务并导入OSS测试数据。
  1. 访问开通DLF页面,您也可以单击免费开通,免费试用DLF产品。
  2. 登录数据湖管理控制台,在元数据管理页面,单击新建数据库。具体操作,请参见创建元数据库
    本文以创建mydatabase数据库为例。
  3. 元数据抽取页面,创建元数据抽取任务,将OSS测试数据导入。具体操作,请参见元数据抽取
    抽取完成后,您可以在元数据管理页面的数据表页签查看。

参数配置

字段描述

抽取任务名称

元数据抽取任务的名称,输入为中英文数字和(_)。

OSS路径

指定待抽取数据的OSS目录。

解析格式

支持json、csv、parquet、orc、hudi、delta、avro中某一类格式进行抽取,或采用自动识别模式会对数据文件自动解析。

目标数据库

抽取获取的元数据存储的元数据库位置。

  1. 开通Hologres服务并购买Hologres实例。具体操作,请参见购买Hologres
    若您是新用户可以申请免费试用Hologres为保证使用体验,免费试用请选择32C配置,若您没有免费试用规格,可以购买Hologres按量付费

image.png

步骤一:配置环境

  1. 在Hologres实例中开启数据湖加速功能。
    访问Hologres实例列表,单击目标实例操作列中的数据湖加速并确认,开启数据湖加速功能后,Hologres实例将重启。 image.png
  2. 登录Hologres实例,创建数据库。具体操作,请参见连接HoloWeb

image.png

image.png

  1. (可选)创建Extension。本文以dlf_fdw为例。
    说明
    Hologres V2.1版本已默认创建,您无需进行此操作。您可以访问Hologres实例列表,在实例详情页面确认您的实例版本。
CREATE EXTENSION IF NOT EXISTS dlf_fdw;

说明
使用Superuser在SQL编辑器-HoloWeb中执行上述语句创建Extension,该操作针对整个DB生效,一个DB只需执行一次。关于Hologres账号授权详情,请参见授权服务账号

  1. SQL编辑器-HoloWeb,执行以下语句,创建dlf_server外部服务器并配置Endpoint信息,确保Hologres、DLF和OSS之间的正常访问。关于更多的创建方式和相关参数介绍详情,请参见创建外部服务器
--创建外部服务器,以上海reigon为例
CREATE SERVER IF NOT EXISTS dlf_server FOREIGN data wrapper dlf_fdw options (
    dlf_region 'cn-shanghai',
    dlf_endpoint 'dlf-share.cn-shanghai.aliyuncs.com',
    oss_endpoint 'oss-cn-shanghai-internal.aliyuncs.com');

步骤二:通过Hologres外部表查询OSS数据湖

Hologres外部表保存与OSS数据湖数据的映射关系,数据在OSS数据湖中存储,不占用Hologres存储空间,查询性能一般在秒级至分钟级。

  1. 创建Hologres外部表,并将OSS数据湖数据映射至Hologres外部表。
IMPORT FOREIGN SCHEMA mydatabase LIMIT TO ----本文以mydatabase为例,创建时需替换为您在DLF元数据管理中的自定义的数据库名称
(
  nation_orc,
  supplier_orc,
  partsupp_orc
)
FROM SERVER dlf_server INTO public options (if_table_exist 'update');
  1. 数据查询。
    创建外部表成功后,可以直接查询外部表读取OSS中的数据。示例语句如下。
--TPCH Q11查询语句
select
        ps_partkey,
        sum(ps_supplycost * ps_availqty) as value
from
        partsupp_orc,
        supplier_orc,
        nation_orc
where
        ps_suppkey = s_suppkey
        and s_nationkey = n_nationkey
        and RTRIM(n_name) = 'EGYPT'
group by
        ps_partkey having
                sum(ps_supplycost * ps_availqty) > (
                        select
                                sum(ps_supplycost * ps_availqty) * 0.000001
                        from
                                partsupp_orc,
                                supplier_orc,
                                nation_orc
                        where
                                ps_suppkey = s_suppkey
                                and s_nationkey = n_nationkey
                                and RTRIM(n_name) = 'EGYPT'
                )
order by
        value desc;


步骤三:通过Hologres内部表查询OSS数据湖

Hologres内部表查询是将OSS数据湖数据导入至Hologres中,数据将在Hologres中存储,可获得更好的查询性能和更高的数据处理能力。关于存储费用详情介绍,请参见计费概述

  1. 在Hologres中创建与外部表相同表结构的内部表,示例如下。
-- 创建nation表
DROP TABLE IF EXISTS NATION;
BEGIN;
CREATE TABLE NATION (
    N_NATIONKEY int NOT NULL PRIMARY KEY,
    N_NAME text NOT NULL,
    N_REGIONKEY int NOT NULL,
    N_COMMENT text NOT NULL
);
CALL set_table_property ('NATION', 'distribution_key', 'N_NATIONKEY');
CALL set_table_property ('NATION', 'bitmap_columns', '');
CALL set_table_property ('NATION', 'dictionary_encoding_columns', '');
COMMIT;
-- 创建supplier表
DROP TABLE IF EXISTS SUPPLIER;
BEGIN;
CREATE TABLE SUPPLIER (
    S_SUPPKEY int NOT NULL PRIMARY KEY,
    S_NAME text NOT NULL,
    S_ADDRESS text NOT NULL,
    S_NATIONKEY int NOT NULL,
    S_PHONE text NOT NULL,
    S_ACCTBAL DECIMAL(15, 2) NOT NULL,
    S_COMMENT text NOT NULL
);
CALL set_table_property ('SUPPLIER', 'distribution_key', 'S_SUPPKEY');
CALL set_table_property ('SUPPLIER', 'bitmap_columns', 'S_NATIONKEY');
CALL set_table_property ('SUPPLIER', 'dictionary_encoding_columns', '');
COMMIT;
-- 创建partsupp表
DROP TABLE IF EXISTS PARTSUPP;
BEGIN;
CREATE TABLE PARTSUPP (
    PS_PARTKEY int NOT NULL,
    PS_SUPPKEY int NOT NULL,
    PS_AVAILQTY int NOT NULL,
    PS_SUPPLYCOST DECIMAL(15, 2) NOT NULL,
    PS_COMMENT text NOT NULL,
    PRIMARY KEY (PS_PARTKEY, PS_SUPPKEY)
);
CALL set_table_property ('PARTSUPP', 'distribution_key', 'PS_PARTKEY');
CALL set_table_property ('PARTSUPP', 'bitmap_columns', 'ps_availqty');
CALL set_table_property ('PARTSUPP', 'dictionary_encoding_columns', '');
COMMIT;
  1. 同步Hologres外部表数据至Hologres内部表。
---将Hologres外表数据导入内表
INSERT INTO nation SELECT * FROM nation_orc;
INSERT INTO supplier SELECT * FROM supplier_orc;
INSERT INTO partsupp SELECT * FROM partsupp_orc;
  1. 查询Hologres内部表数据。
--TPCH Q11查询语句
select
        ps_partkey,
        sum(ps_supplycost * ps_availqty) as value
from
        partsupp,
        supplier,
        nation
where
        ps_suppkey = s_suppkey
        and s_nationkey = n_nationkey
        and RTRIM(n_name) = 'EGYPT'
group by
        ps_partkey having
                sum(ps_supplycost * ps_availqty) > (
                        select
                                sum(ps_supplycost * ps_availqty) * 0.000001
                        from
                                partsupp,
                                supplier,
                                nation
                        where
                                ps_suppkey = s_suppkey
                                and s_nationkey = n_nationkey
                                and RTRIM(n_name) = 'EGYPT'
                )
order by
        value desc;

晒出结果:

一等奖、二等奖、参与奖:

内表查询或外表查询的运行日志截图晒出。

外表查询速度:

image.png


表查询速度: image.png

分享作品参与点赞排行

  • 请使用提交作品账号开通产品并参与挑战,后台会校验产品开通及SQL运行情况。
  • 请上传原创数据表及截图,若为抄袭则取消资格;若发现有刷赞行为,立即撤销作品,取消参赛资格。

挑战奖:

基于已有的外表和内表,分别运行2条同样的自定义SQL,附上外表SQL语句、运行日志、运行结果、内表SQL语句、运行日志、运行结果,6个部分合并1张截图上传

  • SQL需要涉及多表查询,单表SQL不支持参与挑战
  • 获奖名单按照作品提交时间排序
  • 为保证SQL原创性,同样SQL只取第一位
  • 挑战奖优先,不与一等奖、二等奖重复获取

挑战奖作品示例:

image.png


MaxCompute湖仓一体

数据仓库MaxCompute也可以基于本实验同一份OSS数据和DLF抽取的元数据进行 湖数据查询和湖数据入仓 等湖仓一体实践,模拟真实业务中高价值湖数据入仓进行处理加工、联合仓内数据建模等操作,具体请参考MaxCompute湖仓一体

MaxCompute 是企业级 SaaS 模式云数据仓库,以 Serverless 架构提供快速、全托管的在线数据仓库服务,消除了传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您可以经济并高效的分析处理海量数据。数以万计的企业正基于 MaxCompute 进行数据计算与分析,将数据高效转换为业务洞察。更多介绍请查看MaxCompute官网

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
目录
打赏
0
1
1
2
484
分享
相关文章
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
无缝集成 MySQL,解锁秒级 OLAP 分析性能极限,完成任务可领取三合一数据线!
通过 AnalyticDB MySQL 版、DMS、DTS 和 RDS MySQL 版协同工作,解决大规模业务数据统计难题,参与活动完成任务即可领取三合一数据线(限量200个),还有机会抽取蓝牙音箱大奖!
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
使用s3cmd 2.x 与 Cyberduck 管理在 DigitalOcean Spaces 对象存储中的数据
通过 `s3cmd` 2.x 和 Cyberduck,你可以轻松管理 DigitalOcean Spaces 中的数据。`s3cmd` 提供了强大的命令行操作能力,适合脚本化和自动化任务,而 Cyberduck 提供了直观的图形界面,便于日常手动操作。掌握这两种工具的使用方法,将极大提高你的数据管理效率。希望本文能帮助你更好地使用 DigitalOcean Spaces。
35 7
EMR Serverless StarRocks 全面升级:重新定义实时湖仓分析
本文介绍了EMR Serverless StarRocks的发展路径及其架构演进。首先回顾了Serverless Spark在EMR中的发展,并指出2021年9月StarRocks开源后,OLAP引擎迅速向其靠拢。随后,EMR引入StarRocks并推出全托管产品,至2023年8月商业化,已有500家客户使用,覆盖20多个行业。 文章重点阐述了EMR Serverless StarRocks 1.0的存算一体架构,包括健康诊断、SQL调优和物化视图等核心功能。接着分析了存算一体架构的挑战,如湖访问不优雅、资源隔离不足及冷热数据分层困难等。
Hologres 查询队列全面解析
Hologres V3.0引入查询队列功能,实现请求有序处理、负载均衡和资源管理,特别适用于高并发场景。该功能通过智能分类和调度,确保复杂查询不会垄断资源,保障系统稳定性和响应效率。在电商等实时业务中,查询队列优化了数据写入和查询处理,支持高效批量任务,并具备自动流控、隔离与熔断机制,确保核心业务不受干扰,提升整体性能。
113 11
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
本文介绍了基于Hologres的轻量实时高性能OLAP分析方案,涵盖OLAP典型应用场景及Hologres的核心能力。Hologres是阿里云的一站式实时数仓,支持多种数据源同步、多场景查询和丰富的生态工具。它解决了复杂OLAP场景中的技术栈复杂、需求响应慢、开发运维成本高、时效性差、生态兼容弱、业务间相互影响等难题。通过与ClickHouse对比,Hologres在性能、写入更新、主键支持等方面表现更优。文中还展示了小红书、乐元素等客户案例,验证了Hologres在实际应用中的优势,如免运维、查询快、成本节约等。
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
云端问道5期实践教学-基于Hologres轻量实时的高性能OLAP分析
本文基于Hologres轻量实时的高性能OLAP分析实践,通过云起实验室进行实操。实验步骤包括创建VPC和交换机、开通Hologres实例、配置DataWorks、创建网关、设置数据源、创建实时同步任务等。最终实现MySQL数据实时同步到Hologres,并进行高效查询分析。实验手册详细指导每一步操作,确保顺利完成。
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
717 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
EMR Serverless Spark:一站式全托管湖仓分析利器
本文根据2024云栖大会阿里云 EMR 团队负责人李钰(绝顶) 演讲实录整理而成
332 2

相关产品

  • 实时数仓 Hologres
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等