Python有哪些常用的库

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Python有哪些常用的库? 这里将其总结如下,比如在数据清洗时使用到numpy和pandas包,数据可视化时使用matplotlib库,matplotlib库上手容易,更高级的学习seaborn库,seaborn库是,如果创建有交互性的图表,可以使用Pyecharts库9,还有一些其他改良matplotlib库的图表画法在自动化办公中使用到的库Python的作用绝不仅仅只是做数据清洗和数据可视化·,其作用还有很多,有许多意想不到的功能,可以高效的做数据处理、数据可视化,以及可以实现自动化办公,这里仅仅举例讲讲Python使用最多的几个包,欢迎大家补充,下面一起来学习。

1、Numpy

NumPy是Python中科学计算%的基础包。它是一个Python库,提供多维数组%对象,各种派生对象,以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。
NumPv包的核心是 ndarray 对象。它封装了python原生的同数据类型的 n 维组,为了保证其性能优良,其中有许多操作都是代码在本地进行编译后执行的
NumPv的主要对象是同构多维数组Q。它是一个元素表,所有类型都相同,由非负整数%元组索引。在NumPv维度中称为轴.

2、Pandas
官网pypandas.cn/
Pandas 是 Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,冒在简单、直观地处理关系型、标记型数据,广泛应用于数据分析9领域,Pandas 适用于处理与 Excel 表类似的表格数据,以及有序和无序的时间序列数据Q等
Pandas 的主要数据结构是Series (一维数据)和 DataFrame (二维数据),这两种数据结构足以处理金融、统计、社会科学Q,工程等领域里的大多数典型用例,使用pandas进行数据分析流程包含数据整理与清洗、数据分析与建模、数据可视化与制表等阶段
(group by)数据分组9、合、转换数据灵活的分组功能
(merge) 数据连接Q直观地合并功能
(reshape)数据重塑灵活地重塑功能:

3、Matplotlib
Matplotlib是一个Python 2D绘图库,它以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形。Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter笔记本,Web应用程序服务器Q和四个图形用户界面工具包。
Matplotlib 尝试使容易的事情变得更容易,使困难的事情变得可能,只需几行代码就可以生成图表、直方图9、功率谱、条形图、误差图、散点图·等.
为了简单绘图,该 pyplot 模块提供了类似于MATLAB的界面,尤其是与IPython结合使用时,对于高级用户,您可以通过面向对象的界面或MATLAB用户熟悉的一组功能来完全控制线型,字体屋性,轴屋性等

4、Seaborn
Seaborn 是一个基于matplotlib的 Python 数据可视化库,它建立在matplotlib之上,并与Pandas数据结构紧密集成,用于绘制有吸引力和信息丰富的统计图形%的高级界面。
Seaborn 可用于探索数据,它的绘图功能对包含整个数据集%的数据框和数组进行操作,并在内部执行必要的语义映射9和统计聚合以生成信息图,其面向数据集的声明式 API可以专注于绘图的不同元素的含义,而不是如何绘制它们的细节
Matplotlib 拥有全面而强大的 API,几乎可以根据自己的喜好更改图形的任何性,seaborn 的高级界面和 matplotlib 的深度可定制性相结合,使得Seaborn既可以快速探索数据,又可以创建可定制为出版质量最终产品%的图形。
5、Pyecharts
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了
Pyecharts具有简洁的API 设计,使用如丝滑般流畅,支持链式调用,嘉括了30+ 种常见图表,应有尽有,支持主流Notebook 环境,Jupyter Notebook 和JupyterLab,拥有高度灵活的配置项,可轻松搭配出精美的图表。
Pyecharts强大的数据交互%功能,使数据表达信息更加生动,增加了人机互动效果,并目数据呈现效果可直接导出为html文件,增加数据结果交互的机会,使得信息沟通更加容易

相关文章
|
24天前
|
XML JSON 数据库
Python的标准库
Python的标准库
162 77
|
2月前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
83 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
101 4
数据分析的 10 个最佳 Python 库
|
25天前
|
XML JSON 数据库
Python的标准库
Python的标准库
47 11
|
2月前
|
人工智能 API 开发工具
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
吴恩达发布的开源Python库aisuite,提供了一个统一的接口来调用多个大型语言模型(LLM)服务。支持包括OpenAI、Anthropic、Azure等在内的11个模型平台,简化了多模型管理和测试的工作,促进了人工智能技术的应用和发展。
132 1
aisuite:吴恩达发布开源Python库,一个接口调用多个大模型
|
2月前
|
XML 存储 数据库
Python中的xmltodict库
xmltodict是Python中用于处理XML数据的强大库,可将XML数据与Python字典相互转换,适用于Web服务、配置文件读取及数据转换等场景。通过`parse`和`unparse`函数,轻松实现XML与字典间的转换,支持复杂结构和属性处理,并能有效管理错误。此外,还提供了实战案例,展示如何从XML配置文件中读取数据库连接信息并使用。
Python中的xmltodict库
|
25天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
64 8
|
2月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
100 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
35 4