顺序表应用2:多余元素删除之建表算法

简介: 顺序表应用2:多余元素删除之建表算法

顺序表应用2:多余元素删除之建表算法

Time Limit: 3 ms Memory Limit: 600 KiB

SubmitStatisticDiscuss

Problem Description

一个长度不超过10000数据的顺序表,可能存在着一些值相同的“多余”数据元素(类型为整型),编写一个程序将“多余”的数据元素从顺序表中删除,使该表由一个“非纯表”(值相同的元素在表中可能有多个)变成一个“纯表”(值相同的元素在表中只保留第一个)。

要求:

      1、必须先定义线性表的结构与操作函数,在主函数中借助该定义与操作函数调用实现问题功能;

      2、本题的目标是熟悉在顺序表原表空间基础上建新表的算法,要在原顺序表空间的基础上完成完成删除,建表过程不得开辟新的表空间;

      3、不得采用原表元素移位删除的方式。

Input

第一行输入整数n,代表下面有n行输入;

之后输入n行,每行先输入整数m,之后输入m个数据,代表对应顺序表的每个元素。

Output

 输出有n行,为每个顺序表删除多余元素后的结果

Sample Input

4
5 6 9 6 8 9
3 5 5 5
5 9 8 7 6 5
10 1 2 3 4 5 5 4 2 1 3

Sample Output

6 9 8
5
9 8 7 6 5
1 2 3 4 5

Hint

 

Source

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
typedef struct
{
    int *elem;
    int length;
    int listsize;
} sqlist; //初始化
int initlist(sqlist *l)
{
    l->elem = (int *)malloc(10001 * sizeof(int));
    if(!l->elem)
    {
        return -1;
    }
    else
    {
        l->length = 0;
        l->listsize = 10001;
        return 0;
    }
}//建立一个顺序表
int creat(sqlist *l, int k)
{
    int i, m, h, j = 0, w;
    for(i = 0; i < k; i++)
    {
        h = 0;
        scanf("%d", &m);
        for(w = 0; w < j; w++)
        {
            if(l->elem[w] == m)
            {
                h = 1;
                break;
            }
        }
        if(h == 0)
        {
            l->elem[j] = m;
            j++;
            l->length = j;
        }
    }
}
void dispiay(sqlist *l)
{
    int i;
    for(i = 0; i < l->length - 1; i++)
    {
        printf("%d ", l->elem[i]);
    }
    printf("%d\n", l->elem[l->length - 1]);
}
int main()
{
    int i, n, m;
    sqlist l;
    initlist(&l);
    scanf("%d", &n);
    for(i = 0; i < n; i++)
    {
        scanf("%d", &m);//M代表每行的个数
        creat(&l,m);
        dispiay(&l);
    }
    return 0;
}

 


相关文章
|
13天前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
18天前
|
算法 C++
A : DS串应用–KMP算法
这篇文章提供了KMP算法的C++实现,包括计算模式串的next数组和在主串中查找模式串位置的函数,用于演示KMP算法的基本应用。
|
6天前
|
机器学习/深度学习 算法 Python
群智能算法:深入解读人工水母算法:原理、实现与应用
近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
|
10天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
10天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真
|
11天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
12天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
12天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
1天前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。