流数据湖平台Apache Paimon(六)集成Spark之DML插入数据

简介: 流数据湖平台Apache Paimon(六)集成Spark之DML插入数据

4.4. 插入数据

INSERT 语句向表中插入新行。插入的行可以由值表达式或查询结果指定,跟标准的sql语法一致。

INSERT INTO table_identifier [ part_spec ] [ column_list ] { value_expr | query }

part_spec

可选,指定分区的键值对列表,多个用逗号分隔。可以使用类型文字(例如,date’2019-01-02’)。

语法: PARTITION (分区列名称 = 分区列值 [ , … ] )

column_list

可选,指定以逗号分隔的字段列表。

语法:(col_name1 [,column_name2, …])

所有指定的列都应该存在于表中,并且不能相互重复。它包括除静态分区列之外的所有列。字段列表的大小应与 VALUES 子句或查询中的数据大小完全相同。

value_expr

指定要插入的值。可以插入显式指定的值或 NULL。必须使用逗号分隔子句中的每个值。可以指定多于一组的值来插入多行。

语法:VALUES ( { 值 | NULL } [ , … ] ) [ , ( … ) ]

注意:将 Nullable 字段写入 Not-null 字段

不能将另一个表的可为空列插入到一个表的非空列中。Spark可以使用nvl函数来处理,比如A表的key1是not null,B表的key2是nullable:

INSERT INTO A key1 SELECT nvl(key2, ) FROM B

案例:

INSERT INTO tests VALUES(1,1,'order','2023-07-01','1'), (2,2,'pay','2023-07-01','2');
INSERT INTO tests_p SELECT * from tests;

4.5. 查询数据

就像所有其他表一样,Paimon 表可以使用 SELECT 语句进行查询。

Paimon的批量读取返回表快照中的所有数据。默认情况下,批量读取返回最新快照。

4.5.1 时间旅行

可以在查询中使用 VERSION AS OF 和 TIMESTAMP AS OF 来进行时间旅行。

1)读取指定id的快照

SELECT * FROM tests VERSION AS OF 1;
SELECT * FROM tests VERSION AS OF 2;

2)读取指定时间戳的快照

-- 查看快照信息
SELECT * FROM tests&snapshots;
SELECT * FROM tests TIMESTAMP AS OF '2023-07-03 15:34:20.123';
-- 时间戳指定到秒(向上取整)
SELECT * FROM tests TIMESTAMP AS OF 1688369660;

3)读取指定标签

SELECT * FROM tests VERSION AS OF 'my-tag';

4.5.2 增量查询

读取开始快照(不包括)和结束快照之间的增量更改。例如,“3,5”表示快照 3 和快照 5 之间的更改:

spark.read()
.format(“paimon”)
.option(“incremental-between”, “3,5”)
.load(“path/to/table”)

4.6 系统表

系统表包含有关每个表的元数据和信息,例如创建的快照和使用的选项。用户可以通过批量查询访问系统表。

4.6.1 快照表 Snapshots Table

通过snapshots表可以查询表的快照历史信息,包括快照中发生的记录数。Spark中使用需要反引号表名$系统表名

SELECT * FROM tests$snapshots;

通过查询快照表,可以了解该表的提交和过期信息以及数据的时间旅行。

4.6.2 模式表 Schemas Table

通过schemas表可以查询该表的历史schema。

SELECT * FROM tests$schemas;

可以连接快照表和模式表以获取给定快照的字段。

SELECT s.snapshot_id, t.schema_id, t.fields
FROM tests$snapshots s JOIN tests$schemas t
ON s.schema_id=t.schema_id where s.snapshot_id=3;

4.6.3 选项表 Options Table

可以通过选项表查询DDL中指定的表的选项信息。未显示的选项将是默认值。

SELECT * FROM tests$options;

4.6.4 审计日志表 Audit log Table

如果需要审计表的changelog,可以使用audit_log系统表。通过audit_log表,获取表增量数据时可以获取rowkind列。您可以利用该栏目进行过滤等操作来完成审核。

rowkind 有四个值:

+I:插入操作。

-U:使用更新行的先前内容进行更新操作。

+U:使用更新行的新内容进行更新操作。

-D:删除操作。

SELECT * FROM tests$audit_log;

4.6.5 文件表 Files Table

可以查询特定快照表的文件。

– 查询最新快照的文件

SELECT * FROM tests$files;

4.6.6 标签表 Tags Table

通过tags表可以查询表的标签历史信息,包括基于哪些快照进行标签以及快照的一些历史信息。您还可以通过名称获取所有标签名称和时间旅行到特定标签的数据。

SELECT * FROM tests$tags;


目录
相关文章
|
18天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
52 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
17天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
62 2
|
18天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
57 1
|
19天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
48 1
|
29天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
36 1
|
1月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
63 1
|
4月前
|
弹性计算 分布式计算 Serverless
全托管一站式大规模数据处理和分析Serverless平台 | EMR Serverless Spark 评测
【7月更文挑战第6天】全托管一站式大规模数据处理和分析Serverless平台 | EMR Serverless Spark 评测
23706 42
|
3月前
|
存储 数据挖掘 数据处理
【破晓数据湖新时代!】巴别时代揭秘:Apache Paimon 打造 Streaming Lakehouse 的神奇之旅!
【8月更文挑战第9天】随着数据湖技术的发展,企业积极探索优化数据处理的新途径。Apache Paimon 作为一款高性能数据湖框架,支持流式与批处理,适用于实时数据分析。本文分享巴别时代使用 Paimon 构建 Streaming Lakehouse 的实践经验。Paimon 统一了数据存储与查询方式,对构建实时数据管道极具价值。
221 3
|
4月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
150 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
65 0

推荐镜像

更多