基于RM编译码的协作MIMO系统误码率matlab仿真,对比不同RM编译码参数

简介: 基于RM编译码的协作MIMO系统误码率matlab仿真,对比不同RM编译码参数

1.算法运行效果图预览
9ffef870a05bded41c8ef37be8cbbf3a_82780907_202312251510440967321457_Expires=1703488845&Signature=Z6ql7CSFINYUgENALsUtlPC62EY%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2013b

3.算法理论概述
基于RM编译码的协作MIMO(多输入多输出)系统是一种利用多个天线和协作传输来提高通信系统性能的技术。

   Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。RM码自上世纪五十年代被Muller和Reed提出至今,已被应用在多种通信系统中,包括深空通信、蜂窝网络等.Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。

   基于RM编译码的协作MIMO系统利用了空间分集和协作传输的思想,通过多个天线和节点之间的协作,提高了信号的可靠性和覆盖范围。具体而言,当一个节点发送信号时,其附近的节点会接收到这个信号,并对其进行解码和转发,以帮助源节点将信号传输到目的节点。这样,通过多个节点的协作,可以有效地提高信号的可靠性和传输效率。

   RM编译码是一种纠错码技术,通过在信号中加入冗余信息,使得接收端能够纠正传输过程中的错误。在协作MIMO系统中,RM编译码可以用于提高协作传输的可靠性,减少误码率。

基于RM编译码的协作MIMO系统的数学模型可以表示为:

y = Hx + n

其中,y表示接收端接收到的信号,H表示信道矩阵,x表示发送端发送的信号,n表示噪声。

   在这个模型中,发送端和接收端都配备了多个天线,形成了一个MIMO系统。通过利用空间分集和协作传输,可以有效地提高信号的可靠性和传输效率。同时,RM编译码的应用可以进一步提高系统的纠错能力。

   基于RM编译码的协作MIMO系统的实现需要考虑多个方面,包括天线设计、信号处理、编译码技术等。下面是一个简单的实现过程:

天线设计:在发送端和接收端设计多个天线,以实现协作传输。
信号处理:对发送的信号进行预处理,例如调制、编码等,以提高信号的抗干扰能力和可靠性。
协作传输:在发送端和接收端之间建立协作传输机制,使得附近的节点能够接收到信号并对其进行解码和转发。
RM编译码:在发送端和接收端应用RM编译码技术,以提高系统的纠错能力和可靠性。
综上所述,基于RM编译码的协作MIMO系统是一种有效的提高通信系统性能的技术,通过多个天线和节点之间的协作,以及RM编译码的应用,可以实现空间分集、协作传输和纠错能力的提升。

4.部分核心程序
```[V1,N1,K1,I1] = func_rm(r+1,m);
%R
[V2,N2,K2,I2] = func_rm(r,m);
for k = 1:length(SNR)
k
Err = 0;
Num = 0;
Len = 10000;
TL = 500;
Rt = K1/N1;%code rate
N01 = 10^(-SNR(k)/Rt/10);
Rt = K2/N1;%code rate
N02 = 10^(-SNR(k)/Rt/10);
Rt = (K1+K2)/(N1+N2);%code rate
N03 = 10^(-SNR(k)/Rt/10);

while(Err <= TL)
     k
     Err
     Num = Num + 1;
     %产生数据
     K             = min(K1,K2);
     Signal0       = randint(1,K,M,Len);
     Signal        = [Signal0,zeros(1,K1-K2)];

     %*****************************************************************
     %RM编码
     Signal_RM_S2D = func_Encode(Signal,V1);
     %调制
     RM_mod_S2D    = modulate(mods,Signal_RM_S2D);
     %过瑞利衰落信道,2条多径
     RM_Noise_S2D0 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); 
     RM_Noise_S2D1 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D));
     RM_Noise_S2D1 = [zeros(1,3),RM_Noise_S2D1(1:end-3)];
     RM_Noise_S2D2 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); 
     RM_Noise_S2D2 = [zeros(1,3),RM_Noise_S2D2(1:end-3)];
     RM_Noise_S2D  = RM_Noise_S2D0 + 0.2*RM_Noise_S2D1 + 0.1*RM_Noise_S2D2;


     %*****************************************************************
     %中继部分
     RM_demod_S2R  = demodulate(demods,RM_Noise_S2D);
     Bhat_S2R      = func_Decode(RM_demod_S2R,r+1,m,V1,N1,K1,I1); 
     %RM编码
     Signal_RM_S2R = func_Encode(Bhat_S2R(1:K),V2);
     %调制
     RM_mod_S2R    = modulate(mods,Signal_RM_S2R);
     %过信道
     RM_Noise_S2R  = RM_mod_S2R + sqrt(2*N03)*randn(size(RM_mod_S2R)); 

     %*****************************************************************
     %解调
     RM_demod_S2D  = demodulate(demods,[RM_Noise_S2D,RM_Noise_S2R]);
     LEN           = length(RM_demod_S2D);
     %RM译码
     Bhat_S2D1     = func_Decode(RM_demod_S2D(1:LEN/2),r+1,m,V1,N1,K1,I1); 
     Bhat_S2D2     = func_Decode(RM_demod_S2D(LEN/2+1:LEN),r,m,V2,N2,K2,I2); 
     %计算误码率
     Err           = Err + min([sum(xor(Bhat_S2D1(1:K),Signal0)),sum(xor(Bhat_S2D2(1:K),Signal0))]);
end
Errs(k) = Err/Num/length(Signal);

end

figure
semilogy(SNR,Errs,'b-o');
grid on;
xlabel('SNR');
ylabel('Bit error');
if m == 4
save r14.mat SNR Errs
end
if m == 5
save r15.mat SNR Errs
end
if m == 6
save r16.mat SNR Errs
end

```

相关文章
|
1天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
1天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
|
1天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
2天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
18 6
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
139 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章