基于RM编译码的协作MIMO系统误码率matlab仿真,对比不同RM编译码参数

简介: 基于RM编译码的协作MIMO系统误码率matlab仿真,对比不同RM编译码参数

1.算法运行效果图预览
9ffef870a05bded41c8ef37be8cbbf3a_82780907_202312251510440967321457_Expires=1703488845&Signature=Z6ql7CSFINYUgENALsUtlPC62EY%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2013b

3.算法理论概述
基于RM编译码的协作MIMO(多输入多输出)系统是一种利用多个天线和协作传输来提高通信系统性能的技术。

   Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。RM码自上世纪五十年代被Muller和Reed提出至今,已被应用在多种通信系统中,包括深空通信、蜂窝网络等.Reed-Muller(RM)码是一类经典的纠错编码,其编码和译码算法都拥有较低的复杂度,容易通过硬件电路实现。此外,RM码可以通过改变参数形成结构丰富的子类,能够适应不同信道。

   基于RM编译码的协作MIMO系统利用了空间分集和协作传输的思想,通过多个天线和节点之间的协作,提高了信号的可靠性和覆盖范围。具体而言,当一个节点发送信号时,其附近的节点会接收到这个信号,并对其进行解码和转发,以帮助源节点将信号传输到目的节点。这样,通过多个节点的协作,可以有效地提高信号的可靠性和传输效率。

   RM编译码是一种纠错码技术,通过在信号中加入冗余信息,使得接收端能够纠正传输过程中的错误。在协作MIMO系统中,RM编译码可以用于提高协作传输的可靠性,减少误码率。

基于RM编译码的协作MIMO系统的数学模型可以表示为:

y = Hx + n

其中,y表示接收端接收到的信号,H表示信道矩阵,x表示发送端发送的信号,n表示噪声。

   在这个模型中,发送端和接收端都配备了多个天线,形成了一个MIMO系统。通过利用空间分集和协作传输,可以有效地提高信号的可靠性和传输效率。同时,RM编译码的应用可以进一步提高系统的纠错能力。

   基于RM编译码的协作MIMO系统的实现需要考虑多个方面,包括天线设计、信号处理、编译码技术等。下面是一个简单的实现过程:

天线设计:在发送端和接收端设计多个天线,以实现协作传输。
信号处理:对发送的信号进行预处理,例如调制、编码等,以提高信号的抗干扰能力和可靠性。
协作传输:在发送端和接收端之间建立协作传输机制,使得附近的节点能够接收到信号并对其进行解码和转发。
RM编译码:在发送端和接收端应用RM编译码技术,以提高系统的纠错能力和可靠性。
综上所述,基于RM编译码的协作MIMO系统是一种有效的提高通信系统性能的技术,通过多个天线和节点之间的协作,以及RM编译码的应用,可以实现空间分集、协作传输和纠错能力的提升。

4.部分核心程序
```[V1,N1,K1,I1] = func_rm(r+1,m);
%R
[V2,N2,K2,I2] = func_rm(r,m);
for k = 1:length(SNR)
k
Err = 0;
Num = 0;
Len = 10000;
TL = 500;
Rt = K1/N1;%code rate
N01 = 10^(-SNR(k)/Rt/10);
Rt = K2/N1;%code rate
N02 = 10^(-SNR(k)/Rt/10);
Rt = (K1+K2)/(N1+N2);%code rate
N03 = 10^(-SNR(k)/Rt/10);

while(Err <= TL)
     k
     Err
     Num = Num + 1;
     %产生数据
     K             = min(K1,K2);
     Signal0       = randint(1,K,M,Len);
     Signal        = [Signal0,zeros(1,K1-K2)];

     %*****************************************************************
     %RM编码
     Signal_RM_S2D = func_Encode(Signal,V1);
     %调制
     RM_mod_S2D    = modulate(mods,Signal_RM_S2D);
     %过瑞利衰落信道,2条多径
     RM_Noise_S2D0 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); 
     RM_Noise_S2D1 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D));
     RM_Noise_S2D1 = [zeros(1,3),RM_Noise_S2D1(1:end-3)];
     RM_Noise_S2D2 = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); 
     RM_Noise_S2D2 = [zeros(1,3),RM_Noise_S2D2(1:end-3)];
     RM_Noise_S2D  = RM_Noise_S2D0 + 0.2*RM_Noise_S2D1 + 0.1*RM_Noise_S2D2;


     %*****************************************************************
     %中继部分
     RM_demod_S2R  = demodulate(demods,RM_Noise_S2D);
     Bhat_S2R      = func_Decode(RM_demod_S2R,r+1,m,V1,N1,K1,I1); 
     %RM编码
     Signal_RM_S2R = func_Encode(Bhat_S2R(1:K),V2);
     %调制
     RM_mod_S2R    = modulate(mods,Signal_RM_S2R);
     %过信道
     RM_Noise_S2R  = RM_mod_S2R + sqrt(2*N03)*randn(size(RM_mod_S2R)); 

     %*****************************************************************
     %解调
     RM_demod_S2D  = demodulate(demods,[RM_Noise_S2D,RM_Noise_S2R]);
     LEN           = length(RM_demod_S2D);
     %RM译码
     Bhat_S2D1     = func_Decode(RM_demod_S2D(1:LEN/2),r+1,m,V1,N1,K1,I1); 
     Bhat_S2D2     = func_Decode(RM_demod_S2D(LEN/2+1:LEN),r,m,V2,N2,K2,I2); 
     %计算误码率
     Err           = Err + min([sum(xor(Bhat_S2D1(1:K),Signal0)),sum(xor(Bhat_S2D2(1:K),Signal0))]);
end
Errs(k) = Err/Num/length(Signal);

end

figure
semilogy(SNR,Errs,'b-o');
grid on;
xlabel('SNR');
ylabel('Bit error');
if m == 4
save r14.mat SNR Errs
end
if m == 5
save r15.mat SNR Errs
end
if m == 6
save r16.mat SNR Errs
end

```

相关文章
|
19天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
37 3
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
算法 5G 数据安全/隐私保护
MIMO系统中差分空间调制解调matlab误码率仿真
本项目展示了一种基于Matlab 2022a的差分空间调制(Differential Space Modulation, DMS)算法。DMS是一种应用于MIMO通信系统的信号传输技术,通过空间域的不同天线传输符号序列,并利用差分编码进行解调。项目包括算法运行效果图预览、核心代码及详细中文注释、理论概述等内容。在发送端,每次仅激活一个天线发送符号;在接收端,通过差分解调估计符号和天线选择。DMS在快速衰落信道中表现出色,尤其适用于高速移动和卫星通信系统。
|
1月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
1月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
58 0
|
1月前
|
Python
基于python-django的matlab护照识别网站系统
基于python-django的matlab护照识别网站系统
16 0
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
202 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
130 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
93 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章

下一篇
无影云桌面