机器学习简介及Hello World级别算法KNN

简介: 机器学习简介及Hello World级别算法KNN

从今天开始,分享一些列机器学习入门知识,也是自己的学习总结,希望和大家一同进步!

1. 机器学习简介

1. 什么是机器学习

机器学习,是人工智能(AI)的一部分。是研究如何让计算机从数据中学习某种规律的科学。

  • 计算机程序根据给定的数据,去优化某一个评价指标
  • 自动的从数据中发现规律
  • 使用规律预测未来(未知)的事务,事件等

可以简单的总结成公式为:

历史数据 + 计算机成功 = 算法模型  

未来数据 + 算法模型 = 预测未来事件

2. 机器学习分类

监督式学习

需要给每个样品打标签,训练数据包含输入和预期的输出。

  • 分类
    标签都是离散值
  • 回归
    标签都是连续值

非监督式学习

不需要标签,训练数据只有输入,没有预期的输出。

  • 聚类
    是指把对象分成不同的子集,使得属于同一个子集的对象都有一些相同的属性。

分类的实例应用:

  • 垃圾邮件/短信检测
  • 自动车牌号识别
  • 人脸识别
  • 手写字符识别
  • 语音识别
  • 医疗图片的病症诊断

回归的实例应用:

  • 自动为二手车估价
  • 预测股票价格
  • 预测未来气温
  • 自动驾驶

聚类的实例应用:

  • 客户分类(市场研究)
  • 用户分组(社交网络)
  • 图像分割
  • 推荐系统
  • 消除歧义(自然语言处理)

3. 机器学习基本流程

  1. 收集数据
    到一些大数据网站或者自己公司软件收集到的数据。
  2. 数据清洗
    对得到的数据,做一些检查,查看是否有明显错误数据,空数据等。
  3. 特征工程
    把数据做一些变换,使得数据能够被程序识别,一般是向量化,提取特征。
  4. 数据预处理
    把数据处理成容易被程序识别的形式,如归一化,标准化等。
  5. 选择算法模型
    需要选择合适的算法模型
  6. 训练调参
    是一个迭代的过程,不断训练,来达到模型的最优。
  7. 模型部署
    在线部署。

4. 数据预处理

  • 特征提取
  • 处理缺失数据
  • 数据定标
  • 数据转换

1. 特征提取

在一个真实的对象中,提取出我们关心的特征。比如物体的形状,体积等。文字的出现位置等。

2. 缺失数据处理

对于数据集中的缺失值,需要根据相关信息,来处理缺失数据。使用均值、中间值,或者众数、相似数等方式来填充缺失值,当然如果缺失值过高,直接丢弃也是可以的。

3. 数据定标

归一化和标准化

归一化:把数据归一化为0到1之间

标准化:把数据标准化为正态分布数据

4. 数据转换

独热编码:

把数据变换为0或1的值

5. 实战-读取数据和可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

使用 pandas 读取 csv 文件

data = pd.read_csv('Advertising.csv')
data.head()

output

使用图表来展示数据,这样能够更加直观的查看数据分布等信息

plt.figure(figsize=(16, 8))
plt.scatter(data['TV'], data['sales'], c ='black')
plt.xlabel("Money spent on TV ads")
plt.ylabel("Sales")
plt.show()

output

海拔高度与温度的预测练习

h_data = pd.read_csv('height.csv')h_dataplt.figure()plt.scatter(h_data['height'], h_data['temperature'])plt.xlabel('height')plt.ylabel('temperature')plt.show()h_X = h_data['height'].values.reshape(-1, 1)h_y = h_data['temperature'].values.reshape(-1, 1)h_reg = LinearRegression()h_reg.fit(h_X, h_y)print("线性模型为: Y = {:.5}X + {:.5} ".format(h_reg.coef_[0][0], h_reg.intercept_[0]))h_height = h_reg.predict([[8000]])h_height[0][0]

2. “Hello world” 级别算法-KNN

1. 什么是 KNN 算法

做 K 最近邻算法,如果样本总共分为 N 类,如果一个未知分类点,距离某一类的距离最近,则该点属于该类。

K 一般取值为奇数值,代表选取 K 个点的距离。

kNN 算法的核心思想是如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。--来自百度百科

2. 距离的计算

欧式距离的计算:

二维平面上两点 a(x1,y1) 与 b(x2,y2) 间的欧氏距离:

三维空间两点 a(x1,y1,z1)与b(x2,y2,z2) 间的欧氏距离:

两个 n 维向量 a(x11,x12,…,x1n) 与 b(x21,x22,…,x2n) 间的欧氏距离:

3. 手写 KNN 算法

计算欧式距离

def euc_dis(instance1, instance2):
    dist = np.sqrt(sum((instance1 - instance2)**2))
    return dist

dist 的计算就是,求两个向量差的平方和,再取平方根。

我们可以使用 numpy 库自带的公式来验证下

import numpy as np
def euc_dis(instance1, instance2):
    dist = np.sqrt(sum((instance1 - instance2)**2))
    return dist
vec1 = np.array([2, 3])
vec2 = np.array([5, 6])
euc_dis(vec1, vec2)
np.linalg.norm(vec1 - vec2)

最后的结果都是 4.242640687119285

实现 KNN 算法

def knn_classify(X, y, testdata, k):
    distances = [euc_dis(x, testdata) for x in X]
    kneighbors = np.argsort(distances)[:k]
    count = Counter(y[kneighbors])
    return count.most_common()[0][0]

argsort 函数返回的是数组值从小到大的索引值,most_common 函数用来实现 Top n 功能。

来看下这两个函数的具体实例

argsort

test_data1 = np.array([2, 1, 5, 0])
np.argsort(test_data1)

output

array([3, 1, 0, 2], dtype=int32)

返回的数组依次为最小值0的索引位置3,依次类推

most_common

from collections import Counter
test_data2 = Counter("abcdabcab")
test_data2.most_common(2)

output

[('a', 3), ('b', 3)]

返回出现次数最多的 top n

使用手写的 KNN 算法做预测

# 导入iris数据
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=2003)
# 预测结果。    
predictions = [knn_classify(X_train, y_train, data, 3) for data in X_test]
print(predictions)
correct = np.count_nonzero((predictions==y_test)==True)
print(correct)
print ("Accuracy is: %.3f" %(correct/len(X_test)))

4. K 值的选择(调参)

1. 决策边界

可以将决策边界一侧的所有点分类为属于一个类,而将另一侧的所有点分类为属于另一个类。决策边界选择的好坏,直接影响着模型预测的准确程度。

总结:决策边界过于粗糙,会导致欠拟合,而过于精细,就会有过拟合的风险。

KNN算法中的决策边界,就是确定 K 的值,到底选取 K 为几才是最优的解。

2. 交叉验证

为了确定 K 的值,可以采用交叉验证的方式。

首先,当我们拿到一组数据之后,先把数据拆分为训练集和测试集,训练集用于训练模型,测试集用于测试模型的准确率。

测试集不可用于训练!测试集不可用于训练!测试集不可用于训练!(重要的事情吼三遍)

然后,再把训练集拆分成训练集和验证集。这里的验证集,是用来给交叉验证时使用的.

比如,如果我们想做5轮交叉验证,那么就分别把最原始的训练集分成5中情况,如图:

接着,分别取 K=1,K=3,K=5 等情况在上述5种数据集中分别训练验证,得出准确率最高的 K 值,此时,我们就通过交叉验证的方式,找到了在该数据集下的最优 K 值。

最后,才会在测试集上做最后的测试,如果模型在测试集上达到了我们预期的准确率,则模型可用。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
124 4
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
31 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
18天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
43 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
40 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
3月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)