机器学习简介及Hello World级别算法KNN

简介: 机器学习简介及Hello World级别算法KNN

从今天开始,分享一些列机器学习入门知识,也是自己的学习总结,希望和大家一同进步!

1. 机器学习简介

1. 什么是机器学习

机器学习,是人工智能(AI)的一部分。是研究如何让计算机从数据中学习某种规律的科学。

  • 计算机程序根据给定的数据,去优化某一个评价指标
  • 自动的从数据中发现规律
  • 使用规律预测未来(未知)的事务,事件等

可以简单的总结成公式为:

历史数据 + 计算机成功 = 算法模型  

未来数据 + 算法模型 = 预测未来事件

2. 机器学习分类

监督式学习

需要给每个样品打标签,训练数据包含输入和预期的输出。

  • 分类
    标签都是离散值
  • 回归
    标签都是连续值

非监督式学习

不需要标签,训练数据只有输入,没有预期的输出。

  • 聚类
    是指把对象分成不同的子集,使得属于同一个子集的对象都有一些相同的属性。

分类的实例应用:

  • 垃圾邮件/短信检测
  • 自动车牌号识别
  • 人脸识别
  • 手写字符识别
  • 语音识别
  • 医疗图片的病症诊断

回归的实例应用:

  • 自动为二手车估价
  • 预测股票价格
  • 预测未来气温
  • 自动驾驶

聚类的实例应用:

  • 客户分类(市场研究)
  • 用户分组(社交网络)
  • 图像分割
  • 推荐系统
  • 消除歧义(自然语言处理)

3. 机器学习基本流程

  1. 收集数据
    到一些大数据网站或者自己公司软件收集到的数据。
  2. 数据清洗
    对得到的数据,做一些检查,查看是否有明显错误数据,空数据等。
  3. 特征工程
    把数据做一些变换,使得数据能够被程序识别,一般是向量化,提取特征。
  4. 数据预处理
    把数据处理成容易被程序识别的形式,如归一化,标准化等。
  5. 选择算法模型
    需要选择合适的算法模型
  6. 训练调参
    是一个迭代的过程,不断训练,来达到模型的最优。
  7. 模型部署
    在线部署。

4. 数据预处理

  • 特征提取
  • 处理缺失数据
  • 数据定标
  • 数据转换

1. 特征提取

在一个真实的对象中,提取出我们关心的特征。比如物体的形状,体积等。文字的出现位置等。

2. 缺失数据处理

对于数据集中的缺失值,需要根据相关信息,来处理缺失数据。使用均值、中间值,或者众数、相似数等方式来填充缺失值,当然如果缺失值过高,直接丢弃也是可以的。

3. 数据定标

归一化和标准化

归一化:把数据归一化为0到1之间

标准化:把数据标准化为正态分布数据

4. 数据转换

独热编码:

把数据变换为0或1的值

5. 实战-读取数据和可视化

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

使用 pandas 读取 csv 文件

data = pd.read_csv('Advertising.csv')
data.head()

output

使用图表来展示数据,这样能够更加直观的查看数据分布等信息

plt.figure(figsize=(16, 8))
plt.scatter(data['TV'], data['sales'], c ='black')
plt.xlabel("Money spent on TV ads")
plt.ylabel("Sales")
plt.show()

output

海拔高度与温度的预测练习

h_data = pd.read_csv('height.csv')h_dataplt.figure()plt.scatter(h_data['height'], h_data['temperature'])plt.xlabel('height')plt.ylabel('temperature')plt.show()h_X = h_data['height'].values.reshape(-1, 1)h_y = h_data['temperature'].values.reshape(-1, 1)h_reg = LinearRegression()h_reg.fit(h_X, h_y)print("线性模型为: Y = {:.5}X + {:.5} ".format(h_reg.coef_[0][0], h_reg.intercept_[0]))h_height = h_reg.predict([[8000]])h_height[0][0]

2. “Hello world” 级别算法-KNN

1. 什么是 KNN 算法

做 K 最近邻算法,如果样本总共分为 N 类,如果一个未知分类点,距离某一类的距离最近,则该点属于该类。

K 一般取值为奇数值,代表选取 K 个点的距离。

kNN 算法的核心思想是如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。--来自百度百科

2. 距离的计算

欧式距离的计算:

二维平面上两点 a(x1,y1) 与 b(x2,y2) 间的欧氏距离:

三维空间两点 a(x1,y1,z1)与b(x2,y2,z2) 间的欧氏距离:

两个 n 维向量 a(x11,x12,…,x1n) 与 b(x21,x22,…,x2n) 间的欧氏距离:

3. 手写 KNN 算法

计算欧式距离

def euc_dis(instance1, instance2):
    dist = np.sqrt(sum((instance1 - instance2)**2))
    return dist

dist 的计算就是,求两个向量差的平方和,再取平方根。

我们可以使用 numpy 库自带的公式来验证下

import numpy as np
def euc_dis(instance1, instance2):
    dist = np.sqrt(sum((instance1 - instance2)**2))
    return dist
vec1 = np.array([2, 3])
vec2 = np.array([5, 6])
euc_dis(vec1, vec2)
np.linalg.norm(vec1 - vec2)

最后的结果都是 4.242640687119285

实现 KNN 算法

def knn_classify(X, y, testdata, k):
    distances = [euc_dis(x, testdata) for x in X]
    kneighbors = np.argsort(distances)[:k]
    count = Counter(y[kneighbors])
    return count.most_common()[0][0]

argsort 函数返回的是数组值从小到大的索引值,most_common 函数用来实现 Top n 功能。

来看下这两个函数的具体实例

argsort

test_data1 = np.array([2, 1, 5, 0])
np.argsort(test_data1)

output

array([3, 1, 0, 2], dtype=int32)

返回的数组依次为最小值0的索引位置3,依次类推

most_common

from collections import Counter
test_data2 = Counter("abcdabcab")
test_data2.most_common(2)

output

[('a', 3), ('b', 3)]

返回出现次数最多的 top n

使用手写的 KNN 算法做预测

# 导入iris数据
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=2003)
# 预测结果。    
predictions = [knn_classify(X_train, y_train, data, 3) for data in X_test]
print(predictions)
correct = np.count_nonzero((predictions==y_test)==True)
print(correct)
print ("Accuracy is: %.3f" %(correct/len(X_test)))

4. K 值的选择(调参)

1. 决策边界

可以将决策边界一侧的所有点分类为属于一个类,而将另一侧的所有点分类为属于另一个类。决策边界选择的好坏,直接影响着模型预测的准确程度。

总结:决策边界过于粗糙,会导致欠拟合,而过于精细,就会有过拟合的风险。

KNN算法中的决策边界,就是确定 K 的值,到底选取 K 为几才是最优的解。

2. 交叉验证

为了确定 K 的值,可以采用交叉验证的方式。

首先,当我们拿到一组数据之后,先把数据拆分为训练集和测试集,训练集用于训练模型,测试集用于测试模型的准确率。

测试集不可用于训练!测试集不可用于训练!测试集不可用于训练!(重要的事情吼三遍)

然后,再把训练集拆分成训练集和验证集。这里的验证集,是用来给交叉验证时使用的.

比如,如果我们想做5轮交叉验证,那么就分别把最原始的训练集分成5中情况,如图:

接着,分别取 K=1,K=3,K=5 等情况在上述5种数据集中分别训练验证,得出准确率最高的 K 值,此时,我们就通过交叉验证的方式,找到了在该数据集下的最优 K 值。

最后,才会在测试集上做最后的测试,如果模型在测试集上达到了我们预期的准确率,则模型可用。

相关文章
|
25天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
17天前
|
机器学习/深度学习 自然语言处理 算法
|
5天前
|
机器学习/深度学习 算法 搜索推荐
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
Python用机器学习算法进行因果推断与增量、增益模型Uplift Modeling智能营销模型
31 12
|
15天前
|
算法
贪心算法|【简介】
贪心算法|【简介】
|
1月前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
|
1月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【2月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过有效的数据处理策略、合理的特征工程、选择适宜的学习算法以及进行细致的参数调优来提升模型性能。我们将剖析标准化与归一化的差异,探索主成分分析(PCA)的降维魔力,讨论支持向量机(SVM)和随机森林等算法的适用场景,并最终通过网格搜索(GridSearchCV)来实现参数的最优化。本文旨在为读者提供一条清晰的路径,以应对机器学习项目中的挑战,从而在实际应用中取得更精准的预测结果和更强的泛化能力。
|
1月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真
|
1月前
|
算法
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
23 2
|
1月前
|
算法
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
40 1