【Python机器学习】模型聚类高斯混合模型GMM讲解及实战演示(附源码 超详细)

简介: 【Python机器学习】模型聚类高斯混合模型GMM讲解及实战演示(附源码 超详细)

需要源码和数据集请点赞关注收藏后评论留言私信~~~

模型聚类

模型(Model)聚类假定每个簇符合一个分布模型,通过找到这个分布模型,就可以对样本点进行分簇。

在机器学习领域,这种先假定模型符合某种概率分布(或决策函数),然后在学习过程中学习到概率分布参数(或决策函数参数)的最优值的模型,称为参数学习模型。

模型聚类主要包括概率模型和神经网络模型两大类,前者以高斯混合模型(Gaussian Mixture Models,GMM)为代表,后者以自组织映射网络(Self Organizing Map,SOM)为代表。

高斯混合模型GMM

记随机变量X服从含有未知变量τ=(μ,σ^2)的高斯分布,其概率密度为:

高斯混合模型P(├ x|θ)是多个高斯分布混合的模型:

式中,K是混合的高斯分布的总数,τ_i是第i个高斯分布的未知变量,记τ=(τ_1,τ_2,…,τ_K)。α_i是第i个高斯分布的混合系数,α_i>0,∑▒α_i=1,α_i可看作概率值,记α=(α_1,α_2,…,α_K)。记θ=(α,τ)。

将高斯混合模型用于聚类任务时,认为样本是由P(├ x|θ)产生的,产生的过程是先按概率α选择一个高斯分布f(├ x|τ_j),再由该高斯分布生成样本。

由同一高斯分布产生的样本属于同一簇,即高斯混合模型中的高斯分布与聚类的簇一一对应。

在分簇过程中,算法的任务是从训练集中学习到模型参数θ=(α,τ),在分配过程,模型计算测试样本由每个高斯分布产生的概率,取最大概率对应的高斯分布的簇作为分配的簇。

以(0,0)和(10,10)为中心,以1.2和1.8为标准差,分别生成两个簇。

本次示例中,生成的两个簇是完全间隔开的,观察模型学习到的均值和方差是非常小的,由此可见误差比较小

代码如下

X1, y1 = make_blobs(n_samples=300, n_features=2, centers=[[0,0]], cluster_std=[1.2])
X2, y2 = make_blobs(n_samples=600, n_features=2, centers=[[3,3]], cluster_std=[1.8])
plt.scatter(X1[:, 0], X1[:, 1], marker='o', color='r')
plt.scatter(X2[:, 0], X2[:, 1], marker='+', color='b')
plt.show()

下面是将两个簇的一部分重合的效果

这次均值和协方差都变大了很多,由此可见 高斯混合聚类对重合部分的点并不能很好的预测,分簇结果有一条明显的分界线,该分界线是两个模型计算概率值相等的地方

下面对txt文件中的点的坐标进行高斯混合聚类分析的效果如下

代码如下

from sklearn.mixture import GaussianMixture
import numpy as np
samples = np.loadtxt("kmeansSamples.txt")
gm = GaussianMixture(n_components=2, random_state=0).fit(samples)
labels = gm.predict(samples)
import matplotlib.pyplot as plt
plt.scatter(samples[:,0],samples[:,1],c=labels+1.5,linewidths=np.power(labels+1.5, 2))
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
30天前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
103 61
Python装饰器实战:打造高效性能计时工具
|
2天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
26天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
54 20
|
Python
PYTHON实战两数之和
1. 两数之和 难度:简单 收藏 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。
207 0
PYTHON实战两数之和
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80
|
21天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
3月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
171 59
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
51 14

热门文章

最新文章