【Python机器学习】模型聚类高斯混合模型GMM讲解及实战演示(附源码 超详细)

简介: 【Python机器学习】模型聚类高斯混合模型GMM讲解及实战演示(附源码 超详细)

需要源码和数据集请点赞关注收藏后评论留言私信~~~

模型聚类

模型(Model)聚类假定每个簇符合一个分布模型,通过找到这个分布模型,就可以对样本点进行分簇。

在机器学习领域,这种先假定模型符合某种概率分布(或决策函数),然后在学习过程中学习到概率分布参数(或决策函数参数)的最优值的模型,称为参数学习模型。

模型聚类主要包括概率模型和神经网络模型两大类,前者以高斯混合模型(Gaussian Mixture Models,GMM)为代表,后者以自组织映射网络(Self Organizing Map,SOM)为代表。

高斯混合模型GMM

记随机变量X服从含有未知变量τ=(μ,σ^2)的高斯分布,其概率密度为:

高斯混合模型P(├ x|θ)是多个高斯分布混合的模型:

式中,K是混合的高斯分布的总数,τ_i是第i个高斯分布的未知变量,记τ=(τ_1,τ_2,…,τ_K)。α_i是第i个高斯分布的混合系数,α_i>0,∑▒α_i=1,α_i可看作概率值,记α=(α_1,α_2,…,α_K)。记θ=(α,τ)。

将高斯混合模型用于聚类任务时,认为样本是由P(├ x|θ)产生的,产生的过程是先按概率α选择一个高斯分布f(├ x|τ_j),再由该高斯分布生成样本。

由同一高斯分布产生的样本属于同一簇,即高斯混合模型中的高斯分布与聚类的簇一一对应。

在分簇过程中,算法的任务是从训练集中学习到模型参数θ=(α,τ),在分配过程,模型计算测试样本由每个高斯分布产生的概率,取最大概率对应的高斯分布的簇作为分配的簇。

以(0,0)和(10,10)为中心,以1.2和1.8为标准差,分别生成两个簇。

本次示例中,生成的两个簇是完全间隔开的,观察模型学习到的均值和方差是非常小的,由此可见误差比较小

代码如下

X1, y1 = make_blobs(n_samples=300, n_features=2, centers=[[0,0]], cluster_std=[1.2])
X2, y2 = make_blobs(n_samples=600, n_features=2, centers=[[3,3]], cluster_std=[1.8])
plt.scatter(X1[:, 0], X1[:, 1], marker='o', color='r')
plt.scatter(X2[:, 0], X2[:, 1], marker='+', color='b')
plt.show()

下面是将两个簇的一部分重合的效果

这次均值和协方差都变大了很多,由此可见 高斯混合聚类对重合部分的点并不能很好的预测,分簇结果有一条明显的分界线,该分界线是两个模型计算概率值相等的地方

下面对txt文件中的点的坐标进行高斯混合聚类分析的效果如下

代码如下

from sklearn.mixture import GaussianMixture
import numpy as np
samples = np.loadtxt("kmeansSamples.txt")
gm = GaussianMixture(n_components=2, random_state=0).fit(samples)
labels = gm.predict(samples)
import matplotlib.pyplot as plt
plt.scatter(samples[:,0],samples[:,1],c=labels+1.5,linewidths=np.power(labels+1.5, 2))
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
15天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
65 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
24天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
44 12
|
1月前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
55 8
|
1月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
53 6
|
1月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
43 0