【python机器学习】K-Means算法详解及给坐标点聚类实战(附源码和数据集 超详细)

简介: 【python机器学习】K-Means算法详解及给坐标点聚类实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

人们在面对大量未知事物时,往往会采取分而治之的策略,即先将事物按照相似性分成多个组,然后按组对事物进行处理。机器学习里的聚类就是用来完成对事物进行分组的任务

一、样本处理

聚类算法是对样本集按相似性进行分簇,因此,聚类算法能够运行的前提是要有样本集以及能对样本之间的相似性进行比较的方法。

样本的相似性差异也称为样本距离,相似性比较称为距离度量。

设样本特征维数为n,第i个样本表示为x_i={x_i^(1),x_i^(2),…,x_i^(n)}。因此,样本也可以看成n维空间中的点。当n=2时,样本可以看成是二维平面上的点。

二维平面上两点x_i和x_j之间的欧氏距离:

K均值聚类算法常采用欧氏距离作为样本距离度量准则。

二维平面上两点间欧氏距离的计算公式推广到n维空间中两点x_i和x_j的欧氏距离计算公式:

二、基本思想

设样本总数为m,样本集为S={x_1,x_2,…,x_m}。K均值聚类算法对样本集分簇的个数是事先指定的,即k。设分簇后的集合表示为C={C_1,C_2,…,C_k},其中每个簇都是样本的集合。

K均值聚类算法的基本思想是让簇内的样本点更“紧密”一些,也就是说,让每个样本点到本簇中心的距离更近一些。

常采用该距离的平方之和作为“紧密”程度的度量标准,因此,使每个样本点到本簇中心的距离的平方和尽量小是k-means算法的优化目标。每个样本点到本簇中心的距离的平方和也称为误差平方和(Sum of Squared Error, SSE)。

从机器学习算法的实施过程来说,这类优化目标一般统称为损失函数(loss function)或代价函数(cost function)。

三、簇中心的计算

当采用欧氏距离,并以误差平方和SSE作为损失函数时,一个簇的簇中心按如下方法计算:

对于第i个簇C_i,簇中心u_i=(u_i^(1),u_i^(2),…,u_i^(n))为簇C_i内所有点的均值,簇中心u_i第j个特征为

SSE的计算方法为:

四、算法流程

 

五、对坐标点聚类实战

坐标点存在txt文件中 需要源码和数据集请点赞关注收藏后评论区留言私信~~~

K均值聚类算法以计算簇中心并重新分簇为一个周期进行迭代,直到簇稳定,分配结果不再变化为止,下面来看一个对二维平面上的点进行聚类的例子

效果展示如下

经过不断的迭代SSE误差在不断的减小,图像中的聚类也变得更为清晰,直到最后一个图变为三个较为稳定的簇

 

部分代码如下

def L2(vecXi, vecXj):
    return np.sqrt(np.sum(np.power(vecXi - vecXj, 2)))
from sklearn.metrics import silhouette_score, davies_bouldin_score
def kMeans(S, k, distMeas=L2):
    m = np.shape(S)[0] # 样本总数
    sampleTag = np.zeros(m)
    n = np.shape(S)[1] # 样本向量的特征数
    clusterCents = np.mat([[-1.93964824,2.33260803],[7.79822795,6.72621783],[10.64183154,0.20088133]])
    #clusterCents = np.mat(np.zeros((k,n)))
    #for j in range(n):
    #    minJ = min(S[:,j]) 
    #    rangeJ = float(max(S[:,j]) - minJ)
    #    clusterCents[:,j] = np.mat(minJ + rangeJ * np.random.rand(k,1))
plt.scatter(clusterCents[:,0].tolist(),clusterCents[:,1].tolist(),c='r',marker='^',linewidths=7)
        plt.scatter(S[:,0],S[:,1],c=sampleTag,linewidths=np.power(sampleTag+0.5, 2)) # 用不同大小的点来表示不同簇的点
        plt.show()
        print("SSE:"+str(SSE))
        print("SC:"+str(silhouette_score(S, sampleTag, metric='euclidean')))
        print("DBI:"+str(davies_bouldin_score(S, sampleTag)))
        print("- - - - - - - - - - - - - - - - - - - - - - - -")
        # 重新计算簇中心
        for i in range(k):
            ClustI = S[np.nonzero(sampleTag[:]==i)[0]]
            clusterCents[i,:] = np.mean(ClustI, axis=0) 
    return clusterCents, sampleTag, SSE

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
14天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
14天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
31 2
|
15天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
25 1
|
12天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
26 0
|
15天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
59 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能

热门文章

最新文章

下一篇
无影云桌面