极智AI | ubuntu编译Darknet与YOLO训练

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 大家好,我是极智视界,本文介绍了在 ubuntu 上编译 darknet 及 yolo 训练的方法。

大家好,我是极智视界,本文介绍了在 ubuntu 上编译 darknet 及 yolo 训练的方法。


1、编译 darknet

1.1 编译 opencv

关于 cuda 及 cudnn 的安装就不多说了,关于 opencv 的编译可以参考我之前写的《【经验分享】x86、aarch64、arm32环境编译/交叉编译opencv方法》,里面记录了在 x86、aarch64及 arm32 平台上编译 opencv 的方法,简洁有效。

1.2 编译 darknet

clone 源码:

git clone https://github.com/AlexeyAB/darknet.git
cd darknet

修改 Makefile,打开 gpu、opencv、openmp:

GPU=1
CUDNN=1
CUDNN_HALF=1
OPENCV=1
AVX=0
OPENMP=1
LIBSO=1
ZED_CAMERA=0
ZED_CAMERA_v2_8=0

然后开始编译,很简单:

make -j32

完了验证一下是否安装成功:

./darknet detect cfg/yolov3.cfg cfg/yolov3.weights data/dog.jpg

当然 yolov3.weights 需要自己下载,传送:https://pjreddie.com/media/files/yolov3.weights

运行成功后,会在 <darknet-path> 目录下生成一张很经典的检测图 predictions.jpg:


2、Yolo 训练

2.1 制作 VOC 数据集

可以制作 VOC 格式的自己的数据集,也可以直接用 VOC 的数据进行训练。

关于 VOC 格式数据怎么制作的,可以参考我的这篇:《【经验分享】目标检测 VOC 格式数据集制作》,里面介绍的比较详细了。

2.2 Yolo 训练

在有了数据集后,然后搞来模型结构文件和预训练权重就可以开启愉快的炼丹之旅。在 cfg 文件夹里其实已经提供了很多的模型结构文件,如 yolov3.cfg、yolov3-tiny.cfg、yolov4.cfg、yolov4-tiny.cfg 等,你只需要找到相应的预训练权重就行了,如:

接下来我们以 yolov4 为例,开启咱们愉快的训练之旅吧。

我这里是非桌面环境,所以加了 -dont_show 传参。

./darknet detector train cfg/voc.data cfg/yolov4.cfg yolov4.conv.137 -dont_show

来看以上命令,./darknet detector train 是固定的,其他:

  • cfg/voc.data:传训练数据;
  • cfg/yolov4.cfg:传训练模型结构;
  • yolov4.conv.137:传预训练权重

以上执行训练的命令十分清晰,来看一下 voc.data:

classes= 20                                        # 目标检测类别数
train  = /home/pjreddie/data/voc/train.txt         # 训练数据集
valid  = /home/pjreddie/data/voc/test.txt          # 测试数据集
names = data/voc.names                             # 类别名称
backup = /home/pjreddie/backup/                    # 训练过程中间权重备份目录

在 .cfg 中我们也可以针对自己的训练情况做一些改动,主要是 [net] 内的一些参数:

[net]
batch=64                  # batch 设置
subdivisions=32           # 每次传进 batch/subdivision 的数据,若gpu显存不够用,把这个参增大
# Training
width=608                 # 图片宽
height=608                # 图片高
channels=3                # 通道数
momentum=0.949            # 动量,影响梯度下降到最优值得速度
decay=0.0005              # 权重衰减正则项,用于防止过拟合
angle=0                   # 通过旋转角度增多训练样本
saturation = 1.5          # 通过调整图片饱和度来增多训练样本
exposure = 1.5            # 通过调整曝光度来增多训练样本
hue=.1                    # 通过调整色调来增多训练样本
learning_rate=0.0013      # 学习率,这个参数比较重要,决定训练收敛快慢及是否能达到好的效果
burn_in=1000              # 学习率设置相关,当小于该参时更新有一种方式,大于该参时采用policy更新方式
max_batches = 500500      # 训练批次到这个参的时候停止训练
policy=steps              # 学习率调整策略
steps=400000,450000       # step和scales是配合使用,这里的意思到400000和450000的时候学习率分别衰减10倍,因为后面慢慢收敛了
scales=.1,.1
#cutmix=1                 # cutmix变换,是数据增强的一种方式
mosaic=1                  # mosaic变换,是数据增强的一种方式

除了这些外,如果你是训练自己的数据集,检测的类别数就不一定是官方给的 20 了,所以对于 yolo 层也需要做一些修改,拿其中一个 yolo 层来说:

...
[convolutional]
size=1
stride=1
pad=1
filters=75          # filters = 3*(classes+5),这个需要根据你的 classes 数目进行相应修改
activation=linear
[yolo]
mask = 6,7,8
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=20        # 检测类别数
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
max_delta=5

yolo 层中的 anchors 对于不同的检测任务也需要做一定的修改,比如检测人,锚框就需要瘦高型的,如检测车,可能更倾向于窄宽型的锚框,然后像一些置信度阈值、nms阈值等参数也需要训练的时候做一些调参。

然后解释一下为什么需要修改 yolo 上一层卷积的 filters,这个我在这篇《【经验分享】剖析 darknet entry_index 指针偏移逻辑》有做过一定的分析,需要从 yolo 层的数据排布来说:

(1)数据按四维 [N, C, H, W] 来说,N 为 batch,C 为 3 * (5 + classes)、H / W 为 feature_map 高和宽。需要解释一下 C,C = 3 * (1 + 4 + classes),其中 1 表示置信度,4 为检测框位置信息,classes 为类别数,即每个类别给出一个检测得分,乘 3 表示每个格子有 3 个锚框。这样就形成了 yolo 层接受的四维数据排布,也就是 yolo 上一层的输出数据排布;

(2)至于 yolo 层的输出,darknet 里会用一维动态数组来存放 yolo 层的数据,这里就涉及到怎么将四维数据转换为一维数据的问题。darknet 里是这么做的,假设四维数据为 [N, C, H, W] ,每个维度对应的索引为 [n, c, h, w],那么展开就是 n*C*H*W + c*H*W + h*W + w,按这样的逻辑存放到 *output 中。

这样回过头来看应该比较好理解为什么 yolo 上一层卷积的 filters 为 3 * (classes + 5) 了。

好了,接下来我们开始训练吧,还是执行:

./darknet detector train cfg/voc.data cfg/yolov4.cfg yolov4.conv.137 -dont_show

如果需要保存训练日志,可以这么做:

./darknet detector train cfg/voc.data cfg/yolov4l.cfg yolov4.conv.137 2>1 | tee visualization/train_yolov4.log

控制台会输出训练日志:

等训练完就会在 backup = /home/pjreddie/backup/ 保存训练得到的最终及中间权重文件。如果效果满意的话就可以拿去部署,对于目标检测来说,衡量效果怎么样的指标一般就是 map 了。


好了,以上分享了 ubuntu 上编译 darknet 以及训练 yolo 的方法,希望我的分享能对你的学习有一点帮助。


logo_show.gif


相关文章
|
3月前
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
53 2
【AI系统】感知量化训练 QAT
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
40 1
【AI系统】训练后量化与部署
|
13天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
50 8
|
2月前
|
Ubuntu 应用服务中间件 nginx
Ubuntu安装笔记(三):ffmpeg(3.2.16)源码编译opencv(3.4.0)
本文是关于Ubuntu系统中使用ffmpeg 3.2.16源码编译OpenCV 3.4.0的安装笔记,包括安装ffmpeg、编译OpenCV、卸载OpenCV以及常见报错处理。
205 2
Ubuntu安装笔记(三):ffmpeg(3.2.16)源码编译opencv(3.4.0)
|
22天前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
40 0
|
2月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
188 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
Ubuntu 编译器 计算机视觉
Ubuntu系统编译OpenCV4.8源码
【10月更文挑战第17天】只要三步即可搞定,第一步是下载指定版本的源码包;第二步是安装OpenCV4.8编译需要的编译器与第三方库支持;第三步就是编译OpenCV源码包生成安装文件并安装。
|
2月前
|
Ubuntu Shell API
Ubuntu 64系统编译android arm64-v8a 的openssl静态库libssl.a和libcrypto.a
Ubuntu 64系统编译android arm64-v8a 的openssl静态库libssl.a和libcrypto.a
|
3月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。

热门文章

最新文章

下一篇
DataWorks