深源恒际:图像识别技术助力企业VI系统管理规范化

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 深源恒际,依托原创图像识别技术,为企业用户打造了VI系统规范化管理服务。基于VI系统的使用场景,VI系统规范化管理服务分为规范生成和规范检测两个应用模块。

作为最直接、最外在、最有传播力和感染力的认知符号,VI系统以完整的视觉传达体系,将企业理念、文化特质、服务内容等抽象语意转换为具体符号,从而塑造出独特且固定的企业形象。作为传递企业形象的重要媒介,VI系统通常是应用最为广泛、出现频率最高的视觉传达体系,能够有效推广企业及其产品的知名度。因此,为维护品牌形象,企业机构通常十分重视VI系统的规范化管理。 

企业机构尤其是大型集团企业均设有完整且标准的VI体系,并对VI元素在各部门、各机构间的分发、流转、监控等环节实行统一管理,以防在某一环节被篡改、被错用。现实应用中,依靠人力监控、管理VI系统的使用流程,不仅无形中增加了人力成本,且无法完全避免错用、滥用情形的发生。
_1
(VI系统示例)

以计算机视觉应用见长的AI科技公司深源恒际,依托原创图像识别技术,为企业用户打造了VI系统规范化管理服务。基于VI系统的使用场景,VI系统规范化管理服务分为规范生成和规范检测两个应用模块。
 
在VI元素分发前,基于图像识别算法,以VI系统基本要素标准值为基准,自动生成符合设计规范和使用需求的VI标准底图,并对企业名称、企业标识、象征图案、Slogan、标准字字体、标准色色值、字(行)间距等VI系统基本参数进行详尽说明,确保VI元素在流转过程中准确规范、不被篡改,为使用方提供标准文本。
 
当VI元素落地后,基于图像识别算法生成的VI标准底图,自动检验、甄别实际应用场景中的VI系统使用是否符合相应的规范标准,包括企业名称、企业标识、象征图案、Slogan、标准字字体、标准色色值、字(行)间距等VI基本参数是否符合标准,以便品牌方及时发现错用、滥用VI系统的情形并予以纠正。
 
基于图像识别技术在VI系统识别上的应用,企业用户尤其是组织结构相对复杂的大型机构可以实现VI系统管理流程自动化,自动把控企业内外部在VI系统分发、流转、使用中是否得当,比如在办公用品、生产设备、建筑环境、产品包装、广告媒体、交通工具、衣着制服、广告招牌、陈列展示方面的使用,一来有效防范VI元素在分发、流转过程中被不当篡改的风险,二来及时发现色值偏差、字体偏差、比例结构失调等错用、滥用VI系统的误差行为,防止对品牌形象造成不良影响,高效维护品牌权益。
 
VI系统识别是典型的小场景个性化需求。“个性化需求属于长尾需求,相对比较低频、通用性不高或延展空间不大,服务供给侧没有足够的动力去挖掘这部分需求,导致有需求的客户很难在市场上匹配到相应的服务资源。而对决策成本较低、对市场需求反应敏捷的创业公司而言,或许是个机会。”深源恒际对技术应用与市场需求之间的平衡有独到的解读。 
_2
(AI as a service)

基于上述理念,深源恒际搭建了三位一体的技术服务体系,从以深度学习为引擎,集数据存储、数据标注、模型训练、模型封装为一体的工具集合平台,到基于服务运行环境和服务部署平台提供标准化应用的SaaS服务平台,再到以深度契合业务场景、适配用户业务需求为重心的全流程一站式技术解决方案,三大服务模式从技术、应用到服务,由轻度赋能向重度孵化递进,面向企业级用户输出端到端的AI研发应用能力,提供从技术咨询、技术落地到技术培训全方位一体化的AI技术解决方案,以灵活、多元的服务体系帮助用户构建紧贴业务需求的应用,加快行业智慧化升级进程。

相关文章
|
3天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
25 6
|
17天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。
|
18天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第36天】在当今科技飞速发展的时代,深度学习已成为人工智能领域的一颗璀璨明珠。本文将深入探讨深度学习在图像识别方面的技术原理和应用实例,旨在为读者提供一个全面而深入的了解。我们将从基础理论出发,逐步揭示深度学习如何革新了我们对图像数据的处理和理解方式。
|
20天前
|
机器学习/深度学习 算法 TensorFlow
深度学习中的图像识别技术
【10月更文挑战第34天】本文将探讨深度学习在图像识别领域的应用,并介绍如何利用Python和TensorFlow库实现一个简单的图像分类模型。我们将从基本原理出发,逐步讲解数据准备、模型构建、训练过程以及结果评估等关键步骤。通过本文的学习,读者可以了解到深度学习在图像识别中的强大能力,并掌握如何使用现代工具和技术来解决实际问题。
49 2
|
5天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用与挑战####
本文旨在探讨深度学习驱动下的图像识别技术于自动驾驶汽车中的应用现状,重点分析其在环境感知、障碍物检测及路径规划等方面的贡献,并深入剖析该技术面临的数据依赖性、算法泛化能力、实时处理需求等核心挑战。通过综述当前主流算法框架与最新研究成果,本文为推动自动驾驶技术的稳健发展提供理论参考与实践指导。 ####
16 0
|
2月前
|
机器学习/深度学习 人工智能 算法
利用AI技术进行图像识别的探索之旅
【10月更文挑战第21天】本文主要介绍了如何运用人工智能技术进行图像识别。通过深入浅出的解释,让读者对AI图像识别有更深入的理解。同时,文章还提供了一些代码示例,帮助读者更好地理解和应用这些技术。
|
2月前
|
机器学习/深度学习 监控 自动驾驶
深度学习中的图像识别技术及其应用
【10月更文挑战第20天】本文将探讨深度学习在图像识别领域的应用,包括其原理、关键技术和实践案例。我们将从基础概念出发,逐步深入到模型构建、训练技巧以及性能评估等高级话题。通过实例分析,揭示深度学习如何革新传统图像处理流程,提升识别准确率和效率。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和实用的知识。
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第5天】在人工智能的浪潮中,深度学习技术以其卓越的性能和广泛的应用场景成为了科技领域的热点。本文将探讨深度学习在图像识别中的应用,通过实际代码示例,揭示其背后的原理和实现方式。我们将看到,从基础的卷积神经网络到复杂的模型架构,深度学习如何一步步提高图像处理的准确性和效率。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
数据驱动的AI技术:如何通过深度学习提升图像识别精度
【10月更文挑战第18天】 数据驱动的AI技术:如何通过深度学习提升图像识别精度
52 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的正则化技术及其在图像识别中的应用
【10月更文挑战第8天】本文深入浅出地探讨了深度学习中一项关键技术——正则化,并详细解释了其如何有效防止模型过拟合。通过引入正则化的基本概念,阐述其在深度学习中的重要性,并结合具体代码示例,展示如何在图像识别任务中应用正则化技术来提升模型性能。文章旨在为初学者提供一个清晰的正则化技术入门指南,同时为有一定基础的开发者提供深入理解和实践的机会。