【云计算与大数据技术】Spark的解析(图文解释 超详细必看)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 【云计算与大数据技术】Spark的解析(图文解释 超详细必看)

一、Spark RDD

Spark是一个高性能的内存分布式计算框架,具备可扩展性,任务容错等特性,每个Spark应用都是由一个driver program 构成,该程序运行用户的 main函数 。

Spark提供的一个主要抽象就是 RDD(Resilient Distributed Datasets),这 是一个分布在集群中多节点上的数据集合,利用内存和磁盘作为存储介质。其中内存为主要数据存储对象,支持对该数据集合的并发操作,用户可以使用HDFS中的一个文件来创建一个RDD,可以控制RDD存放于内存中还是存储与磁盘。

RDD的设计目标是针对迭代式机器学习,每个RDD是只读的、不可更改的

创建RDD

有两种方式创建一个 RDD

在driver program 中并行化一个当前的数据集合

利用一个外部存储系统中的数据集合创建

二、Spark与MapReduce对比

Spark 作为新一代的大数据计算框架,针对的是迭代式计算、实时数据处理,要求处理的时间更少,与MapReduce对比整体反映如下

1: 在中间计算结果方面 - Spark基本把数据存放在内存中,只有在内存资源不够的时候才写到磁盘等存储介质中; 而 MapReduce计算过程中 Map任务产生的 计算结果存放到本地磁盘中

2:在计算模型方面 - Spark采用 DAG 图描述计算任务,Spark拥有更丰富的功能;MapReduce则只采用 Map和 Reduce两个函数,计算功能比较简单

3:在计算速度方面 - Spark 的计算速度更快

4:在容错方面 - Spark采用了和 MapReduce类似的方式,针对丢失和无法引用的RDD,Spark采用利用记录的transform,采取重新做已做过的 transform

5:在计算成本方面 - Spark是把RDD主要存放在内存存储介质中,则需要提供高容量的内存;而 MapReduce是面向磁盘的分布式计算框架,因此在成本考虑方面,Spark的计算成本高于 MapReduce计算框架

6:在简单易管理方面 - 目前Spark也在同一个集群上运行流处理 、批处理和机器学习,同时Spark也可以管理不同类型的负载。这些都是 MapReduce做不到的

三、Spark工作机制

开始深入探讨Spark的内部工作原理,具体包括Spark运行的DAG图、Partition、容错机制、缓存管理以及数据持久化

1:DAG工作图

DAG是有向无环图

当用户运行action操作的时候, Spark调度器检查RDD的lineage图,生成一个DAG图

为了Spark更加高效的调度和计算,RDD DAG中还包括宽依赖和窄依赖

窄依赖是父节点 RDD 中的分区最多只被子节点 RDD 中的一个分区使用

宽依赖是父节点RDD中的分区被子节点 RDD 中的多个子分区使用

采用DAG方式描述运行逻辑,可以描述更加复杂的运算功能,也有利于Spark调度器调度

2:分区Partition

Spark 执行每次操作transformation都会产生一个新的RDD,每个RDD是Partition分区的集合

在Spark中 ,操作的粒度是Partition分区

当前支持的分区方式有hash分区和范围(range)分区

3:Linedge容错方法

在容错方面有多种方式,包括数据复制以及记录修改日志

RDD本身是一个不可更改的数据集,Spark根据transformation和action构建它的操作图DAG

当执行任务的 Worker失败时完全可以通过操作图 DAG 获得之前执行的操作,进行重新计算

针对RDD的wide dependency,最有效的容错方式同样是采用checkpoint机制  ,但是当前,Spark并没有引入auto checkpointing机制

4:内存管理

旧版本Spark的内存空间分成了3块独立的区域,每块区域的内存容量是按照JVM堆大小的固定比例进行分配的

1:Execution - 在执行shuffle、join、sort和aggregation时,Execution用于缓存中间数据 默认为0.2

2:Storage - Storage主要用于缓存数据块以提高性能,同时也用于连续不断地广播或发送大的任务结果 默认为0.6

3:Other - 这部分内存用于存储运行系统本身需要加载的代码与元数据 默认为0.2

无论是哪个区域的内存,只要内存的使用量达到了上限,则内存中存储的数据就会被放入到硬盘中,从而清理出足够的内存空间,

5:数据读取

Spark最重要的一个功能是它可以通过各种操作 (operations)持久化(或者缓存 )一 个集合到内存中

这个能力使后续的动作速度更快(通常快10倍以上)。 对应迭代算法和快速的交互使用来说,缓存是一个关键的工具

用户可以利用不同的存储级别存储每一个被持久化的RDD  

四、数据读取

Spark支持多种外部数据源来创建 RDD,Hadoop支持的所有格式Spark都支持

包括HDFS Amazon S3 HBase等等

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
21天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第30天】在数字化浪潮的推动下,云计算已成为企业信息技术架构的核心。然而,随之而来的网络安全问题也日益凸显。本文将探讨云计算与网络安全的关系,分析云服务中的安全挑战,并提出相应的解决方案。我们将通过实例展示如何在云计算环境中实现网络安全的最佳实践,以期为读者提供一条技术融合的未来之路。
|
7天前
|
监控 安全 网络安全
云计算与网络安全:探索云服务中的信息安全技术
【10月更文挑战第43天】本文将深入探讨云计算与网络安全的交汇点,重点分析云服务中的信息安全技术和策略。我们将从云计算的基础架构出发,逐步剖析网络安全的重要性,并介绍如何通过实施有效的安全措施来保护数据和应用程序。文章还将提供实用的代码示例,帮助读者更好地理解和应用这些安全技术。
23 4
|
10天前
|
存储 安全 网络安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域
【10月更文挑战第40天】随着互联网技术的不断发展,云计算已经成为了现代社会中不可或缺的一部分。然而,云计算的普及也带来了一系列的安全问题。本文将探讨云计算与网络安全之间的关系,包括云服务、网络安全、信息安全等领域。我们将通过代码示例来展示如何保护云计算环境中的敏感信息和数据。最后,我们将总结云计算与网络安全之间的紧密联系,并展望未来的发展趋势。
|
12天前
|
云安全 安全 网络安全
云计算与网络安全:技术挑战与解决策略
【10月更文挑战第39天】随着云计算技术的飞速发展,网络安全问题也日益凸显。本文将探讨云计算环境下的网络安全挑战,并提出相应的解决策略。通过分析云服务模型、网络安全威胁以及信息安全技术的应用,我们将揭示如何构建一个安全的云计算环境。
|
13天前
|
云安全 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第38天】 在数字化浪潮中,云计算和网络安全成为支撑现代企业和个人数据安全的两大基石。本文将深入探讨云计算服务如何与网络安全技术相结合,保障信息安全,并分析面临的挑战及未来发展趋势。我们将通过实际案例,揭示云安全的最佳实践,为读者提供一条清晰的技术融合路径。
|
13天前
|
安全 网络安全 数据库
云计算与网络安全:技术融合的未来之路
【10月更文挑战第37天】本文将探讨云计算与网络安全的交汇点,揭示它们如何共同塑造信息安全的未来。我们将深入了解云服务的核心组件、网络安全的关键策略以及两者如何相互增强。通过分析当前的挑战和未来的趋势,本文旨在为读者提供一条清晰的路径,以理解并应对这一不断发展的技术领域。
|
11天前
|
安全 持续交付 云计算
揭秘云计算中的容器化技术及其优势
揭秘云计算中的容器化技术及其优势
19 1
|
15天前
|
存储 安全 网络安全
云计算与网络安全:技术融合与挑战
【10月更文挑战第35天】本文将探讨云计算与网络安全的交叉点,包括云服务、网络安全和信息安全等技术领域。我们将深入了解云计算的基本概念,以及如何通过云服务实现网络安全和信息安全。同时,我们还将讨论云计算面临的安全挑战,并提出相应的解决方案。最后,我们将通过代码示例展示如何在云计算环境中实现网络安全和信息安全。
29 3
|
16天前
|
存储 安全 网络安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的深度剖析
【10月更文挑战第34天】本文将深入探讨云计算与网络安全的关系,包括云服务、网络安全、信息安全等技术领域。我们将通过实例和代码示例,解析云计算如何改变网络安全的格局,以及如何在云计算环境下保护信息安全。我们将从云计算的基本概念开始,然后深入到网络安全和信息安全的主题,最后通过代码示例来展示如何在云计算环境下实现网络安全和信息安全。
|
22天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的双刃剑
【10月更文挑战第28天】本文旨在探索云计算在提供便利和效率的同时,如何成为网络安全领域的一大挑战。我们将从云服务的基本架构出发,分析其在信息安全中的关键作用,进而讨论当前网络安全面临的主要威胁及防御策略。文章还将探讨云计算环境中的数据保护、身份验证和访问控制机制,以及如何通过加密技术和安全协议来增强安全性。最后,我们将展望未来云计算与网络安全的发展趋势,并思考如何平衡技术创新与安全需求。

推荐镜像

更多
下一篇
无影云桌面