【PyTorch深度强化学习】DDPG算法的讲解及实战(超详细 附源码)

简介: 【PyTorch深度强化学习】DDPG算法的讲解及实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留言留下QQ~~~

一、DDPG背景及简介

  在动作离散的强化学习任务中,通常可以遍历所有的动作来计算动作值函数q(s,a)q(s,a),从而得到最优动作值函数q∗(s,a)q∗(s,a) 。但在大规模连续动作空间中,遍历所有动作是不现实,且计算代价过大。针对解决连续动作空间问题,2016年TP Lillicrap等人提出深度确定性策略梯度算法(Deep Deterministic Policy Gradient,DDPG)算法。该算法基于深度神经网络表达确定性策略μ(s)μ(s),采用确定性策略梯度来更新网络参数,能够有效应用于大规模或连续动作空间的强化学习任务中。

   (1) PG法
   构建策略概率分布函数π(a∣s,θπ)π(a∣s,θπ),在每个时刻,Agent根据该概率分布选择动作:

a∼π(a∣s,θπ)(bbb.1)(bbb.1)a∼π(a∣s,θπ)

其中,θπθπ是一个关于随机策略ππ的参数。

   由于PG算法既涉及到状态空间又涉及到动作空间,因此在大规模情况下,得到随机策略需要大量的样本。这样在采样过程中会耗费较多的计算资源,相对而言,该算法效率较为低下。

   (2) DPG算法

   构建确定性策略函数μ(s,θμ)μ(s,θμ),在每个时刻,Agent根据该策略函数获得确定的动作:

a=μ(s,θμ)(bbb.2)(bbb.2)a=μ(s,θμ)

其中,θμθμ表示这是一个关于确定性策略μμ的参数。

   由于DPG算法仅涉及状态空间,因此与PG算法相比,需要的样本数较少,尤其在大规模或连续动作空间任务中,算法效率会显著提升。

   (2) DDPG法

   深度策略梯度方法在每个迭代步都需要采样NN个完整情节{ϖi}Ni=1{ϖi}i=1N来作为训练样本,然后构造目标函数关于策略参数的梯度项以求解最优策略。然而在许多现实场景下的任务中,很难在线获得大量完整情节的样本数据。例如在真实场景下机器人的操控任务中,在线收集并利用大量的完整情节会产生十分昂贵的代价,并且连续动作的特性使得在线抽取批量情节的方式无法覆盖整个状态特征空间。这些问题会导致算法在求解最优策略时出现局部最优解。针对上述问题,可将传统强化学习中的行动者评论家框架拓展到深度策略梯度方法中。这类算法被统称为基于AC框架的深度策略梯度方法。其中最具代表性的是深度确定性策略梯度(DDPG)算法,该算法能够解决一系列连续动作空间中的控制问题。DDPG算法基于DPG法,使用AC算法框架,利用深度神经网络学习近似动作值函数Q(s,a,w)Q(s,a,w)和确定性策略μ(s,θ)μ(s,θ),其中ww和θθ分别为值网络和策略网络的权重。值网络用于评估当前状态动作对的Q值,评估完成后再向策略网络提供更新策略权重的梯度信息,对应AC框架中的评论家;策略网络用于进行选择策略,对应AC框架中的行动者。它主要涉及以下概念:

   (1) 行为策略ββ:一种探索性策略,通过引入随机噪声影响动作的选择;

   (2) 状态分布ρβρβ :Agent根据行为策略ββ产生的状态分布;

   (3) 策略网络:或行动者网络:DDPG使用深度网络对确定性策略函数μ(s,θ)μ(s,θ)进行逼近,θθ为网络参数,输入为当前的状态ss,输出为确定性的动作值aa。有时θθ也表示为θμθμ;

   (4) 价值网络:或评论家网络,DDPG使用深度网络对近似动作值函数Q(s,a,w)Q(s,a,w)进行逼近,ww为网络参数。有时ww也表示为θQθQ。

   相对于DPG法,DDPG法的主要改进如下:

   (1) 采用深度神经网络:构建策略网络和价值网络,分别用来学习近似性策略函数μ(s,θ)μ(s,θ)和近似动作值函数Q(s,a,w)Q(s,a,w),并使用Adam训练网络模型;

   (2) 引入经验回放机制:Agent与环境进行交互时产生的经验转移样本具有时序相关性,通过引入经验回放机制,减少值函数估计所产生的偏差,解决数据间相关性及非静态分布问题,使算法更加容易收敛;

   (3) 使用双网络架构:策略函数和价值函数均使用双网络架构,即分别设置预测网络和目标网络,使算法的学习过程更加稳定,收敛更快。

核心思想

   DDPG的价值网络作为评论家,用于评估策略,学习Q函数,为策略网络提供梯度信息;策略网络作为行动者,利用评论家学习到的Q函数及梯度信息对策略进行改进;同时还引入了带噪声的探索机制和软更新方法。本节将介绍DDPG法的核心思想和主要技术。

DDPG算法流程图如下

二、DDPG算法实现结果

实验环境:OpenAI Gym工具包中的MuIoCo环境,用了其中四个连续控制任务,包括Ant,HalfCheetah,Walker2d,Hopper

每次训练 均运行1000000步,并每取5000步作为一个训练阶段,每个训练阶段结束,对所学策略进行测试评估 与环境交互十个情节并取平均返回值

结果可视化如下 横轴为训练时间步数,纵轴为训练不同阶段评估所得到的平均回报

从图中可以看出,在Ant以及Walker2d任务中,DDPG算法有明显的波动,但是总体上随着训练的不断进行,表现性能呈现稳步提升的趋势,在Hopper任务中,在500000步左右性能达到峰值,此后性能下降,在HalfCheetah任务中,DDPG算法表现相对稳定,后期收敛

三、代码

部分源码如下

#深度强化学习——原理、算法与PyTorch实战,代码名称:代40-DDPG算法的实验过程.py
import numpy as np
import torch
import gym
import os
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ReplayBuffer(object):
    def __init__(self, state_dim, action_dim, max_size=int(1e6)):
        self.max_size = max_size
        self.ptr = 0
        self.size = 0
        self.state = np.zeros((max_size, state_dim))
        self.action = np.zeros((max_size, action_dim))
        self.next_state = np.zeros((max_size, state_dim))
        self.reward = np.zeros((max_size, 1))
        self.not_done = np.zeros((max_size, 1))
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    def add(self, state, action, next_state, reward, done):
        self.state[self.ptr] = state
        self.action[self.ptr] = action
        self.next_state[self.ptr] = next_state
        self.reward[self.ptr] = reward
        self.not_done[self.ptr] = 1. - done
        self.ptr = (self.ptr + 1) % self.max_size
        self.size = min(self.size + 1, self.max_size)
    def sample(self, batch_size):
        ind = np.random.randint(0, self.size, size=batch_size)
        return (
            torch.FloatTensor(self.state[ind]).to(self.device),
            torch.FloatTensor(self.action[ind]).to(self.device),
            torch.FloatTensor(self.next_state[ind]).to(self.device),
            torch.FloatTensor(self.reward[ind]).to(self.device),
            torch.FloatTensor(self.not_done[ind]).to(self.device)
        )
class Actor(nn.Module):
    def __init__(self, state_dim, action_dim, max_action):
        super(Actor, self).__init__()
        self.l1 = nn.Linear(state_dim, 400)
        self.l2 = nn.Linear(400, 300)
        self.l3 = nn.Linear(300, action_dim)
        self.max_action = max_action
    def forward(self, state):
        a = F.relu(self.l1(state))
        a = F.relu(self.l2(a))
        return self.max_action * torch.tanh(self.l3(a))
class Critic(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(Critic, self).__init__()
        self.l1 = nn.Linear(state_dim, 400)
        self.l2 = nn.Linear(400 + action_dim, 300)
        self.l3 = nn.Linear(300, 1)
    def forward(self, state, action):
        q = F.relu(self.l1(state))
        q = F.relu(self.l2(torch.cat([q, action], 1)))
        return self.l3(q)
actor1=Actor(17,6,1.0)
for ch in actor1.children():
    print(ch)
print("*********************")
critic1=Critic(17,6)
for ch in critic1.children():
    print(ch)
class DDPG(object):
    def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.001):
        self.actor = Actor(state_dim, action_dim, max_action).to(device)
        self.actor_target = copy.deepcopy(self.actor)
        self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-4)
        self.critic = Critic(state_dim, action_dim).to(device)
        self.critic_target = copy.deepcopy(self.critic)
        self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), weight_decay=1e-2)
        self.discount = discount
        self.tau = tau
    def select_action(self, state):
        state = torch.FloatTensor(state.reshape(1, -1)).to(device)
        return self.actor(state).cpu().data.numpy().flatten()
    def train(self, replay_buffer, batch_size=64):
        # Sample replay buffer
        state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
        # Compute the target Q value
        target_Q = self.critic_target(next_state, self.actor_target(next_state))
        target_Q = reward + (not_done * self.discount * target_Q).detach()
        # Get current Q estimate
        current_Q = self.critic(state, action)
        # Compute critic loss
        critic_loss = F.mse_loss(current_Q, target_Q)
        # Optimize the critic
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()
        # Compute actor loss
        actor_loss = -self.critic(state, self.actor(state)).mean()
        # Optimize the actor
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()
        # Update the frozen target models
        for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
            target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
        for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
            target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
    def save(self, filename):
        torch.save(self.critic.state_dict(), filename + "_critic")
        torch.save(self.critic_optimizer.state_dict(), filename + "_critic_optimizer")
        torch.save(self.actor.state_dict(), filename + "_actor")
        torch.save(self.actor_optimizer.state_dict(), filename + "_actor_optimizer")
    def load(self, filename):
        self.critic.load_state_dict(torch.load(filename + "_critic"))
        self.critic_optimizer.load_state_dict(torch.load(filename + "_critic_optimizer"))
        self.critic_target = copy.deepcopy(self.critic)
        self.actor.load_state_dict(torch.load(filename + "_actor"))
        self.actor_optimizer.load_state_dict(torch.load(filename + "_actor_optimizer"))
        self.actor_target = copy.deepcopy(self.actor)
# Runs policy for X episodes and returns average reward
# A fixed seed is used for the eval environment
def eval_policy(policy, env_name, seed, eval_episodes=10):
    eval_env = gym.make(env_name)
    eval_env.seed(seed + 100)
    avg_reward = 0.
    for _ in range(eval_episodes):
        state, done = eval_env.reset(), False
        while not done:
            action = policy.select_action(np.array(state))
            state, reward, done, _ = eval_env.step(action)
            avg_reward += reward
    avg_reward /= eval_episodes
    print("---------------------------------------")
    print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}")
    print("---------------------------------------")
    return avg_reward
policy = "DDPG"
env_name = "Walker2d-v4"  # OpenAI gym environment name
seed = 0  # Sets Gym, PyTorch and Numpy seeds
start_timesteps = 25e3  # Time steps initial random policy is used
eval_freq = 5e3  # How often (time steps) we evaluate
max_timesteps = 1e6  # Max time steps to run environment
expl_noise = 0.1  # Std of Gaussian exploration noise
batch_size = 256  # Batch size for both actor and critic
discount = 0.99  # Discount factor
tau = 0.005  # Target network update rate
policy_noise = 0.2  # Noise added to target policy during critic update
noise_clip = 0.5  # Range to clip target policy noise
policy_freq = 2  # Frequency of delayed policy updates
save_model = "store_true"  # Save model and optimizer parameters
load_model = ""  # Model load file name, "" doesn't load, "default" uses file_name
file_name = f"{policy}_{env_name}_{seed}"
print("---------------------------------------")
print(f"Policy: {policy}, Env: {env_name}, Seed: {seed}")
print("---------------------------------------")
if not os.path.exists("./results"):
    os.makedirs("./results")
if save_model and not os.path.exists("./models"):
    os.makedirs("./models")
env = gym.make(env_name)
# Set seeds
env.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {
    "state_dim": state_dim,
    "action_dim": action_dim,
    "max_action": max_action,
    "discount": discount,
    "tau": tau,
}
policy = DDPG(**kwargs)
if load_model != "":
    policy_file = file_name if load_model == "default" else load_model
    policy.load(f"./models/{policy_file}")
replay_buffer = ReplayBuffer(state_dim, action_dim)
# Evaluate untrained policy
evaluations = [eval_policy(policy, env_name, seed)]
state, done = env.reset(), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
for t in range(int(max_timesteps)):
    episode_timesteps += 1
    # Select action randomly or according to policy
    if t < start_timesteps:
        action = env.action_space.sample()
    else:
        action = (
                policy.select_action(np.array(state))
                + np.random.normal(0, max_action * expl_noise, size=action_dim)
        ).clip(-max_action, max_action)
    # Perform action
    next_state, reward, done, _ = env.step(action)
    done_bool = float(done) if episode_timesteps < env._max_episode_steps else 0
    # Store data in replay buffer
    re
    if done:
        # +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True
        print(
            f"Total T: {t + 1} Episode Num: {episode_num + 1} Episode T: {episode_timesteps} Reward: {episode_reward:.3f}")
        # Reset environment
        state, done = env.reset(), False
        episode_reward = 0
        episode_timesteps = 0
        episode_num += 1
        # Evaluate episode
    if (t + 1) % eval_freq == 0:
        evaluations.append(eval_policy(policy, env_name, seed))
        np.save(f"./results/{file_name}", evaluations)
    if save_model:
        policy.save(f"./models/{file_name}")

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
5月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
5月前
|
机器学习/深度学习 数据采集 算法
智能限速算法:基于强化学习的动态请求间隔控制
本文分享了通过强化学习解决抖音爬虫限速问题的技术实践。针对固定速率请求易被封禁的问题,引入基于DQN的动态请求间隔控制算法,智能调整请求间隔以平衡效率与稳定性。文中详细描述了真实经历、问题分析、技术突破及代码实现,包括代理配置、状态设计与奖励机制,并反思成长,提出未来优化方向。此方法具通用性,适用于多种动态节奏控制场景。
167 6
智能限速算法:基于强化学习的动态请求间隔控制
|
2月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
437 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
1月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
1月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
3月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
3月前
|
机器学习/深度学习 存储 算法
强化学习算法基准测试:6种算法在多智能体环境中的表现实测
本文系统研究了多智能体强化学习的算法性能与评估框架,选用井字棋和连珠四子作为基准环境,对比分析Q-learning、蒙特卡洛、Sarsa等表格方法在对抗场景中的表现。实验表明,表格方法在小规模状态空间(如井字棋)中可有效学习策略,但在大规模状态空间(如连珠四子)中因泛化能力不足而失效,揭示了向函数逼近技术演进的必要性。研究构建了标准化评估流程,明确了不同算法的适用边界,为理解强化学习的可扩展性问题提供了实证支持与理论参考。
156 0
强化学习算法基准测试:6种算法在多智能体环境中的表现实测
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
145 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
92 1
|
5月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
750 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践

热门文章

最新文章

推荐镜像

更多