极智AI | 量化实现分享一:详解min-max对称量化算法实现

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 大家好,我是极智视界,本文剖析一下 min-max 对称量化算法实现,以 Tengine 的实现为例。

大家好,我是极智视界,本文剖析一下 min-max 对称量化算法实现,以 Tengine 的实现为例。

Tengine 是 OpenAILab 开源的优秀端侧深度学习推理框架,其核心主要由 C 语言实现,包裹的功能代码嵌套了 C++。量化是推理加速必不可少的优化环节,成熟的推理框架一般会把量化模块剥离出来形成独立的一套工具,如 Tengine、NCNN、昇腾、寒武纪都这么做,这主要是因为量化过程和硬件非强相关,解耦开来能干更多的事。

min-max 和 kl 量化算法是硬件厂商适配推理引擎的基础和标配, 其中 kl 量化深受用户喜爱,如英伟达的 TensorRT 也正是采用了 kl 量化策略;而这里要介绍的 min-max 的特点是逻辑简单、效果良好,作为量化实现分享系列的开篇比较合适,这里带大家一起研究一下 Tengine 中 minx-max 量化策略的具体实现。


1、量化使用

量化主要分为激活值(动态)量化、权值&偏置(静态)量化,而权值&偏置的量化是对精度影响比较大的,激活值的量化对整体影响较小,但也需要量化,才有可能协同达到整体满意的效果。对于一般量化来说,权值&偏置的量化会采用逐通道 perChannel 的方式,而激活值的量化一般是逐层 perLayer 的方式。解释一下为啥会这样,对于量化来说,卷积肯定是大头,对于卷积来说,若激活值量化采用逐通道方式,这和卷积核参数共享是相悖的,所以一般激活值就用逐层量化,以契合卷积参数共享。

这里主要看一下 Tengine 量化需要的传参:

  • Input model:传入的 fp32 tmfile 模型文件;
  • Output model:生成的 int8 tmfile 模型文件;
  • Calib images:传入的激活值量化校准图片;
  • Scale file:生成的校准表文件;
  • Agorithm:量化算法,可选 MIN-MAX、KL、ACIQ、DFQ、EQ;
  • Dims:输入校准图的 shape,这里传三维 c h w,n 在代码中写死 n = 1;
  • Mean:图像预处理均值;
  • Scale:图像预处理缩放尺度;
  • BGR2RGB:通道转换;
  • Center crop:图像预处理,裁剪;
  • Letter box:图像预处理,保持横纵比的前提下对图像做 resize;
  • YOLOv5 focus:类似 yolov5 的预处理注意力机制;
  • Thread num:量化多线程设置;


2、min-max 量化

min-max 是最简单的量化算法,主要逻辑如下:

在 Tengine 中实现 min-max 方法的主要代码如下:

case ALGORITHM_MIN_MAX:{
    if (quant_tool.scale_file.empty()){
        quant_tool.scale_file = "table_minmax.scale";
        quant_tool.activation_quant_tool();
    }
    save_graph_i8_perchannel(quant_tool.model_file.c_str(), quant_tool.scale_file.c_str(), quant_tool.output_file, quant_tool.inplace, false);
    /* Evaluate quantitative losses */
    if (quant_tool.evaluate){
        fprintf(stderr, "[Quant Tools Info]: Step Evaluate, evaluate quantitative losses\n");
        quant_tool.assess_quant_loss(0);
    }
    break;
}

其中最主要的量化搜索策略接口是 quant_tool.activation_quant_tool()save_graph_i8_perchannel,对于 min-max 来说这两个接口分别做了两件事:

(1) 激活值量化,生成 table_minmax.scale

(2) 权值&偏置量化,生成 scale_weight.txtscale_bias.txt

2.1 激活值量化

看 Tengine 源码一定要抓住 struct graph* ir_graph,graph 这个结构体是精髓。

激活值量化是个动态的过程,需要动态的获取每层的数据分布,这也就是为啥需要你喂一定数量校准图片的原因。

先说一下预处理模块,这个其他量化算法是通用的:

// 将 input_tensor 和 input_data 地址绑定,而 input_tensor=>ir_graph->tensor_list。注意:这一步一定要看到,不然后续代码很难看懂
tensor_t input_tensor = get_graph_input_tensor(ir_graph, 0, 0);
if (set_tensor_shape(input_tensor, dims, 4) < 0){
    fprintf(stderr, "Set input tensor shape failed\n");
    return -1;
}
if (set_tensor_buffer(input_tensor, input_data.data(), img_size * sizeof(float)) < 0){
    fprintf(stderr, "Set input tensor buffer failed\n");
    return -1;
}
// prerun graph,做一些初始化配置
if (prerun_graph_multithread(ir_graph, this->opt) < 0){
    fprintf(stderr, "Prerun multithread graph failed.\n");
    return -1;
}
// 图像预处理,传出 input_data,这个和前面的 input_tensor & ir_graph->tensor_list[0] 输入参 绑定,修改了 input_data 即修改了 ir_graph.tensor_list,这样就能看懂
get_input_data_cv(imgs_list[nums].c_str(), input_data.data(), img_c, img_h, img_w, mean, scale, sw_RGB, center_crop, letterbox_rows, letterbox_cols, focus);

然后 run 一下,把中间激活值记录到 ir_graph->tensor_list[i] 里:

if (run_graph(ir_graph, 1) < 0){
    fprintf(stderr, "Run graph failed\n");
    return -1;
}

激活激活值的 min、max 值:

/* get the min/max value of activation tensor */
for (int i = 0; i < ir_graph->tensor_num; i++){
    struct tensor* act_tensor = ir_graph->tensor_list[i];
    if (act_tensor->tensor_type == TENSOR_TYPE_VAR || act_tensor->tensor_type == TENSOR_TYPE_INPUT){
        float* start_addr = (float*)act_tensor->data;
        float* end_addr = (float*)act_tensor->data + act_tensor->elem_num;
        max_activation[i] = std::max(max_activation[i], *std::max_element(start_addr, end_addr));
        min_activation[i] = std::min(min_activation[i], *std::min_element(start_addr, end_addr));}
}

计算激活值量化尺度,对于 softmax 层 scale 默认为 1 / 127.f

/* save the calibration file with min-max algorithm */
FILE* fp_minmax = fopen("table_minmax.scale", "wb");
for (int i = 0; i < ir_graph->tensor_num; i++){
    struct tensor* t = ir_graph->tensor_list[i];
    if (t->tensor_type == TENSOR_TYPE_VAR || t->tensor_type == TENSOR_TYPE_INPUT){
        float act_scale = 1.f;
        int act_zero_point = 0;
        act_scale = std::max(std::abs(max_activation[i]), std::abs(min_activation[i])) / 127.f;
        /* the scale of softmax is always scale = 1 / 127.f */
        for (int j = 0; j < ir_graph->node_num; j++){
            struct node* noden = ir_graph->node_list[j];
            struct tensor* tensor_tmp = get_ir_graph_tensor(ir_graph, noden->output_tensors[0]);
            if (!(tensor_tmp->tensor_type == TENSOR_TYPE_INPUT || tensor_tmp->tensor_type == TENSOR_TYPE_VAR))
                continue;
            std::string tmp_op_name = get_op_name_from_type(noden->op.type);
            std::string cur_name = t->name;
            std::string tmp_name = tensor_tmp->name;
            if ((cur_name == tmp_name) && tmp_op_name == "Softmax"){
                act_scale = 1 / 127.f;
                break;}
        }
        fprintf(fp_minmax, "%s %f %d\n", ir_graph->tensor_list[i]->name, act_scale, act_zero_point);}
}

2.2 权值 & 偏置量化

权值 & 偏置量化和激活值量化不太一样,激活值量化需要校准图片推理以获得输入数据的动态分布,而权值 & 偏置是静态的,单纯的量化过程不需执行前向推理。

2.2.1 创建 graph

加载 tmfile,构建 graph:

struct graph* ir_graph = (struct graph*)create_graph(nullptr, "tengine", model_file);
if (nullptr == ir_graph){
fprintf(stderr, "Create graph failed.\n");
return -1;}

2.2.2 优化激活值量化 scale

这里主要做一个 quant.inplace 的优化,这是针对非卷积算子的量化处理策略。

if (inplace == 0){
    for (int i = 0; i < ir_graph->tensor_num; i++){
        struct tensor* ir_tensor = ir_graph->tensor_list[i];
        if (ir_tensor->tensor_type == TENSOR_TYPE_VAR || ir_tensor->tensor_type == TENSOR_TYPE_INPUT){
            ir_tensor->scale = layer_scale[ir_tensor->name];
            ir_tensor->zero_point = layer_zeropoint[ir_tensor->name];}}
    }
    else{
        std::tr1::unordered_map<std::string, bool> layer_pass;
        for (int i = ir_graph->tensor_num - 1; i >= 0; i--){
            struct tensor* ir_tensor = ir_graph->tensor_list[i];
            if (ir_tensor->tensor_type == TENSOR_TYPE_VAR || ir_tensor->tensor_type == TENSOR_TYPE_INPUT){
                if (layer_pass[ir_tensor->name] == false){
                    uint32_t ir_node_idx = ir_tensor->producer;
                    struct node* t_node = ir_graph->node_list[ir_node_idx];
                    std::string op_name = get_op_name_from_type(t_node->op.type);
                    bool poolTrue = false;
                    bool reluTrue = false;
                    if (op_name == "Pooling"){
                        struct pool_param* pool_param = (struct pool_param*)t_node->op.param_mem;
                        if (pool_param->pool_method == 0)
                            poolTrue = true;
                    }
                    else if (op_name == "ReLU"){
                        struct relu_param* relu_param = (struct relu_param*)t_node->op.param_mem;
                        if (relu_param->negative_slope == 0.f)
                            reluTrue = true;
                    }
                    if (op_name == "Flatten" || op_name == "Reshape" || op_name == "Squeeze" || op_name == "Clip" || op_name == "Slice" || poolTrue || reluTrue){
                        struct tensor* t_in_tensor = ir_graph->tensor_list[t_node->input_tensors[0]];
                        if (layer_scale[ir_tensor->name] != 0){
                            ir_tensor->scale = layer_scale[ir_tensor->name];
                            ir_tensor->zero_point = layer_zeropoint[ir_tensor->name];
                            if (t_in_tensor->tensor_type == TENSOR_TYPE_VAR || t_in_tensor->tensor_type == TENSOR_TYPE_INPUT){
                                recursion_pass_through(ir_graph, ir_tensor->name, t_in_tensor, layer_used, layer_scale, layer_zeropoint, layer_pass);}}
                    }
                    else{
                        ir_tensor->scale = layer_scale[ir_tensor->name];
                        ir_tensor->zero_point = layer_zeropoint[ir_tensor->name];
                    }
                    layer_pass[ir_tensor->name] = true;}}}
}

2.2.3 权值 & 偏置量化

量化的整个过程和激活值量化类似,即先搜索 min、max 值,后做截断缩放处理。这里不仅需要计算 scale,而且还要做截断缩放处理的原因是需要生成 int8 tmfile 量化模型文件。这里还有一点需要注意的是权值量化精度为 int8,偏置量化精度为 int32,因为权值做完矩阵乘后值很有可能就会溢出 int8,所以需要权值矩阵乘后的值用 int32 存储,然后与 int32 的偏置做加法。

除了以上这些,和激活值量化还有个区别是,激活值量化是 perLayer 的,而权值 & 偏置量化是 perChannel 的。

权值 int8 量化:

/* quantize the weight data from fp32 to int8 */
if (op_name == "Convolution" || op_name == "FullyConnected" || op_name == "Deconvolution"){
    struct tensor* weight_tensor = ir_graph->tensor_list[noden->input_tensors[1]];
    int channel_num = weight_tensor->dims[0];
    int cstep = int(weight_tensor->elem_num / channel_num);
    float* weight_data = (float*)weight_tensor->data;
    int8_t* i8_weight_data = (int8_t*)sys_malloc(weight_tensor->elem_num * sizeof(int8_t));
    float* weight_scale_list = (float*)sys_malloc(channel_num * sizeof(float));
    int* weight_zp_list = (int*)sys_malloc(channel_num * sizeof(int));
    fprintf(fp_weight, "%s ", weight_tensor->name);
    /* calculate the quant scale value of weight perchannel, scale = abs(min, max) / 127 */
    if (internal){
        // TODO
        for (int ch = 0; ch < channel_num; ch++){
            weight_scale_list[ch] = weight_tensor->scale_list[ch];
            weight_zp_list[ch] = 0;}
    }
    else{
        for (int ch = 0; ch < channel_num; ch++){
            float* weight_data_ch_start = weight_data + ch * cstep;
            float* weight_data_ch_end = weight_data + (ch + 1) * cstep;
            float weight_max = *std::max_element(weight_data_ch_start, weight_data_ch_end);
            float weight_min = *std::min_element(weight_data_ch_start, weight_data_ch_end);
            weight_scale_list[ch] = std::max(std::abs(weight_max), std::abs(weight_min)) / 127.f;
            weight_zp_list[ch] = 0;
            fprintf(fp_weight, "%8.8f ", weight_scale_list[ch]);
        }
        fprintf(fp_weight, "\n");
    }
    /* quantize the value of weight from Float32 to Int8, value_i8 = (value_fp32 / scale).round().clip(-127, 127) */
    for (int ch = 0; ch < channel_num; ch++){
        for (int j = 0; j < cstep; j++){
            if (weight_data[ch * cstep + j] == 0 || weight_scale_list[ch] == 0)
                i8_weight_data[ch * cstep + j] = 0;
            else{
                float int8_data = round(weight_data[ch * cstep + j] / weight_scale_list[ch]);
                int8_data = int8_data > 127.f ? 127.f : int8_data;
                int8_data = int8_data < -127.f ? -127.f : int8_data;
                i8_weight_data[ch * cstep + j] = int8_t(int8_data);}}
    }
    weight_tensor->scale_list = weight_scale_list;
    weight_tensor->zp_list = weight_zp_list;
    weight_tensor->data_type = TENGINE_DT_INT8;
    weight_tensor->elem_size = sizeof(int8_t); // int8, signed char
    weight_tensor->data = i8_weight_data;
    weight_tensor->quant_param_num = channel_num;
}

偏置 int32 量化:

/* quantize the weight data from fp32 to int32 */
if (noden->input_num > 2){
    struct tensor* input_tensor = ir_graph->tensor_list[noden->input_tensors[0]];
    struct tensor* bias_tensor = ir_graph->tensor_list[noden->input_tensors[2]];
    float* bias_scale_list = (float*)sys_malloc(bias_tensor->dims[0] * sizeof(float));
    int* bias_zp_list = (int*)sys_malloc(bias_tensor->dims[0] * sizeof(int32_t));
    float* bias_data = (float*)bias_tensor->data;
    int* int32_bias_data = (int*)sys_malloc(bias_tensor->elem_num * sizeof(int32_t));
    int bstep = int(bias_tensor->elem_num / channel_num);
    fprintf(fp_bias, "%s ", bias_tensor->name);
    /* calculate the quant scale value of bias perchannel, scale = scale_weight * scale_in */
    for (int ch = 0; ch < channel_num; ch++){
        bias_scale_list[ch] = weight_scale_list[ch] * input_tensor->scale;
        bias_zp_list[ch] = 0;
        fprintf(fp_bias, "%8.8f ", bias_scale_list[ch]);
    }
    fprintf(fp_bias, "\n");
    /* quantize the value of bias from Float32 to Int32, value_i32 = (value_fp32 / scale).round() */
    for (int ch = 0; ch < channel_num; ch++){
        for (int bi = 0; bi < bstep; bi++){
            if (bias_data[ch * bstep + bi] == 0 || bias_scale_list[ch] == 0)
                int32_bias_data[ch * bstep + bi] = 0;
            else
                int32_bias_data[ch * bstep + bi] = int(round(bias_data[ch * bstep + bi] / bias_scale_list[ch]));}
    }
    bias_tensor->scale_list = bias_scale_list;
    bias_tensor->zp_list = bias_zp_list;
    bias_tensor->data_type = TENGINE_DT_INT32;
    bias_tensor->elem_size = sizeof(int32_t); // int32, signed int
    bias_tensor->data = int32_bias_data;
    bias_tensor->quant_param_num = channel_num;
}


到这里权值 & 偏置的量化就介绍的差不多咯。


以上详细介绍了 min-max 量化算法的实现,主要以 Tengine 为例进行代码说明,希望我的分享能对你的学习有一点帮助。


v2-d4545564532acbec17a8d2fd69c60cb8_1440w.gif


相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
「AI工程师」算法研发与优化-工作指导
**工作指导书摘要:** 设计与优化算法,提升性能效率;负责模型训练及测试,确保准确稳定;跟踪业界最新技术并应用;提供内部技术支持,解决使用问题。要求扎实的数学和机器学习基础,熟悉深度学习框架,具备良好编程及数据分析能力,注重团队协作。遵循代码、文档和测试规范,持续学习创新,优化算法以支持业务发展。
26 0
「AI工程师」算法研发与优化-工作指导
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | AI 基石,无处不在的朴素贝叶斯算法
```markdown 探索贝叶斯定理:从默默无闻到AI基石。18世纪数学家贝叶斯的理论,初期未受重视,后成为20世纪机器学习、医学诊断和金融分析等领域关键。贝叶斯定理是智能背后的逻辑,朴素贝叶斯分类器在文本分类等应用中表现出色。贝叶斯网络则用于表示变量间条件依赖,常见于医学诊断和故障检测。贝叶斯推理通过更新信念以适应新证据,广泛应用于统计和AI。尽管有计算复杂性等局限,贝叶斯算法在小数据集和高不确定性场景中仍极具价值。了解并掌握这一算法,助你笑傲智能江湖! ```
33 2
算法金 | AI 基石,无处不在的朴素贝叶斯算法
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
59 9
|
24天前
|
机器学习/深度学习 数据采集 人工智能
|
1月前
|
机器学习/深度学习 人工智能 编解码
AI - 支持向量机算法
**支持向量机(SVM)**是一种用于二分类的强大学习算法,寻找最佳超平面以最大化类别间间隔。对于线性可分数据,SVM通过硬间隔最大化找到线性分类器;非线性数据则通过核技巧映射到高维空间,成为非线性分类器。SVM利用软间隔处理异常或线性不可分情况,并通过惩罚参数C平衡间隔和误分类。损失函数常采用合页损失,鸢尾花数据集常用于SVM的示例实验。
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 没有思考过 Embedding,不足以谈 AI
**摘要:** 本文深入探讨了人工智能中的Embedding技术,解释了它是如何将高维数据映射到低维向量空间以简化处理和捕获内在关系的。文章介绍了词向量、图像嵌入和用户嵌入等常见类型的Embedding,并强调了其在自然语言处理、计算机视觉和推荐系统中的应用。此外,还讨论了Embedding的数学基础,如向量空间和线性代数,并提到了Word2Vec、GloVe和BERT等经典模型。最后,文章涵盖了如何选择合适的Embedding技术,以及在资源有限时的考虑因素。通过理解Embedding,读者能够更好地掌握AI的精髓。
12 0
算法金 | 没有思考过 Embedding,不足以谈 AI
|
1月前
|
机器学习/深度学习 人工智能 Dart
AI - 机器学习GBDT算法
梯度提升决策树(Gradient Boosting Decision Tree),是一种集成学习的算法,它通过构建多个决策树来逐步修正之前模型的错误,从而提升模型整体的预测性能。
|
24天前
|
机器学习/深度学习 人工智能 供应链
|
29天前
|
算法
基于仿射区间的分布式三相不对称配电网潮流算法matlab仿真
```markdown # 摘要 本课题聚焦于基于仿射区间的分布式三相配电网潮流算法在MATLAB2022a中的仿真。算法利用仿射运算处理三相不平衡情况及分布式电源注入,旨在提供比区间算法更精确的不确定区域。仿真结果展示了算法优势。核心程序设计考虑了PQ、PV及PI节点,将不同类型的节点转换统一处理,以适应含分布式电源的配电网潮流计算需求。 ``` 这个摘要以Markdown格式呈现,总字符数为233,满足了240字符以内的要求。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。
AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。
43 0