【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现

简介: 【Python | 自动驾驶】阐发AI大模型在APS中的底层逻辑与代码实现

1️⃣文章引言

当今,AI大模型是一个火热的关键词。随着人工智能的迅猛发展,AI大模型在各个领域展现出了巨大的潜力和应用价值。在自动驾驶领域,AI大模型的应用驱动自动驾驶算法具备更强的泛化能力。

那么 AI大模型 为自动驾驶赋能了什么?它的未来发展前景又是怎样?

本文将以主流自动驾驶汽车特斯拉为例,揭开AI大模型在自动驾驶领域的神秘面纱


AI大模型在自动驾驶中的应用涵盖了深度神经网络、卷积神经网络、循环神经网络、

BEV+Transformer特征级融合以及语义分割等方面。通过这些应用,AI大模型能够提供强大的感知和理解能力,为自动驾驶系统的性能和安全性提供关键支持。

2️⃣视觉感知优化汽车之眼

在自动驾驶中,视觉感知是非常重要的一项技术,AI大模型在视觉感知上也有着广泛的应用。

AI大模型可以通过目标检测和跟踪技术,实现对道路上的车辆、行人等目标的准确识别和追踪。这种技术能够帮助自动驾驶系统建立对周围环境的感知,并为决策和规划提供必要的信息。

常见的目标检测算法包括基于传统方法的Haar特征级联分类器、HOG+SVM以及基于深度学习的Faster R-CNN和YOLO等。这些算法通常通过在图像上滑动窗口,并使用分类器来判断窗口内是否存在目标,进而完成目标的定位与识别。

光流估计是通过分析连续帧图像中像素的位移来推断运动信息的技术。

AI大模型可以利用光流估计来检测道路上的动态物体,并进行动态障碍物的预测和跟踪。这对于自动驾驶系统的安全性和稳定性至关重要。

1702553385116.png

光流估计基于亮度恒定和空间连续假设,将相邻图像中同一点的灰度变化关系转化为速度向量场,其中点的运动轨迹是连续、等间距的。通过对图像中的特征点进行跟踪,可以得到这些特征点的速度向量,从而推断出物体在图像中的运动情况。

以下是光流估计的简单代码:

import cv2
cap = cv2.VideoCapture(0)
# 设置参数
feature_params = dict(maxCorners=100, qualityLevel=0.3, minDistance=7, blockSize=7)
lk_params = dict(winSize=(15, 15), maxLevel=2, criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 初始化点的位置
old_points = None
while True:
    ret, frame = cap.read()
    # 灰度处理
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # 检测特征点
    if old_points is None:
        old_points = cv2.goodFeaturesToTrack(gray, mask=None, **feature_params)
    else:
        # 计算光流
        new_points, status, error = cv2.calcOpticalFlowPyrLK(old_gray, gray, old_points, None, **lk_params)
        # 选取好的新特征点
        good_new = new_points[status == 1]
        # 选取对应的旧特征点
        good_old = old_points[status == 1]
        # 绘制跟踪结果
        for i, (new, old) in enumerate(zip(good_new, good_old)):
            a, b = new.ravel()
            c, d = old.ravel()
            mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
            frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
        img = cv2.add(frame, mask)
        old_gray = gray.copy()  # 更新旧特征点
        old_points = good_new.reshape(-1, 1, 2)  # 更新旧特征点
    cv2.imshow('frame', img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

AI大模型在目标检测与跟踪、路面分割与地面估计、光流估计与动态物体检测等方面的应用,能够提供强大的视觉感知能力,为自动驾驶系统的安全性和性能提供重要支持。


3️⃣神经网络赋能感知算法

神经网络是自动驾驶中的重要组成部分,用于感知、决策和控制,提供智能化的数据处理和驾驶决策能力。

在自动驾驶中,我们主要运用到了深度神经网络DNN、卷积神经网络CNN、循环神经网络RNN三种神经网络。

深度神经网络DNN

深度神经网络是一种由多个神经网络层级组成的模型,每一层都会对输入数据进行一系列的非线性转换和特征提取。通过增加网络的深度,深度神经网络可以学习到更复杂、抽象的特征表示,从而提高模型的表达能力和性能。


在自动驾驶中,深度神经网络常用于图像识别、目标检测、语义分割等感知任务,以及决策和规划等高级驾驶任务。

卷积神经网络CNN

卷积神经网络通过卷积层和池化层的组合,可以从图像中提取特征,并自动学习这些特征的表示。卷积操作可以在输入图像上滑动一个小的窗口,将窗口内的局部信息与卷积核进行卷积运算,以提取不同位置的特征。而池化层则可以对特征图进行下采样,保留最重要的特征信息。通过堆叠多个卷积层和池化层,CNN可以逐渐提取出更高级别的特征,从而实现对图像的分类、检测和分割等任务。

在自动驾驶中,CNN被广泛应用于实现车辆的视觉感知,如道路边界识别障碍物检测交通标志识别等。

循环神经网络RNN

循环神经网络是一种用于处理序列数据的神经网络。与传统的前馈神经网络不同,RNN具有循环连接,使得它可以保持记忆并处理变长的序列输入。

举个例子:

假设我们有一段文本:“The cat sat on the mat”,现在需要将其进行自动翻译为中文。我们可以使用循环神经网络来完成这个任务。


首先,我们定义一个包含若干隐藏层的循环神经网络,并将整个英文传入网络中。在每个时间步长上,网络会从前一个时间步长中的隐藏状态和当前时间步长的输入中计算出当前时间步长对应的隐藏状态,并将其传递到下一个时间步长。在整个文本输入完成后,我们从最后一个隐藏状态中提取出该文本的语义表示。


接着,我们可以将这个语义表示作为输入,连同一个全连接层一起,构成一个解码器。在解码器中,我们在每个时间步长上都输出一个汉字。为了让模型学习到如何正确翻译句子,我们将整个中文文本作为目标输出,并以其与解码器的输出之间的差异作为损失函数,使用反向传播算法对整个模型进行训练。经过数代迭代,循环神经网络将逐渐学会将英文文本翻译成中文。

图示如下:

输入层               隐藏层                   输出层
--------        -----------        --------
|  w   | ------->|   neuron  |------->|   x   |
|  o   |         |    (h)    |        |   n   |
|  r   | <-------|            |<-------|   .
|  d   | ------->|            |------->|   .
--------        ------------       --------

循环神经网络在自然语言处理、语音识别、时间序列预测等任务中广泛应用。RNN能够捕捉到序列中的动态模式,并对未来的内容进行预测或生成。


4️⃣BEV+Transformer创新特征级融合

特征级融合指的是将不同来源或不同类型的特征进行整合,以提升模型性能和表征能力。

BEV是一种俯视图,可以提供关于场景的全局信息和准确的空间定位。BEV以图像的形式展示了车辆周围的环境,每个像素代表一种属性(例如障碍物、道路线等)。

1702553301094.png

而Transformer是一种基于自注意力机制的序列建模方法,它通过多头自注意力机制和前馈神经网络构建,可以同时考虑序列中的长距离依赖关系,并且在处理任意长度的序列时具有可扩展性。

1702553316253.png

使用Transformer网络来处理BEV图像中的特征,并将其编码为高维特征表示。然后,这些特征可以与其他传感器(如相机图像)提取的特征进行融合,形成一个更加综合且全面的特征表示。


简单来说, 使用融合后的特征表示作为输入,目标检测算法会根据综合特征来预测物体的位置、类别和其他属性。


这样的融合可以帮助模型更好地理解和处理复杂的场景,并提升任务的性能,例如目标检测、目标跟踪和行为预测等。


5️⃣语义分割深化场景理解

语义分割是计算机视觉领域的一个任务,旨在将图像中的每个像素标记为对应的语义类别,从而实现对图像的像素级别理解。

1702553434837.png

语义分割能够将图像中的每个像素进行分类,包括物体、背景和其他区域

同时,语义分割也可以区分出图像中不同的物体实例,并给它们分配独立的类别标签,例如目标的姿态、形状和尺寸等特征。

1702553420756.png

这提供了更详细和准确的场景信息,也为各种计算机视觉任务和应用提供了更强大的支持和基础。


总结

AI大模型的发展和成熟为自动驾驶技术带来了巨大的推动力。

未来,自动驾驶将成为安全、高效和舒适出行的代名词,同时对交通方式和城市规划产生深远的影响,为我们创造更美好的出行体验。

目录
相关文章
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
30 5
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
6天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
37 3
|
8天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
39 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
5天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
5天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
8天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
4天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
12 1
|
6天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
5天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。