基于PAI-EAS一键部署通义千问模型

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 本教程中,您将学习如何在阿里云模型在线服务(PAI-EAS)一键部署基于开源模型通义千问的WebUI应用,以及使用WebUI和API进行模型推理。

1. 教程简述

本教程中,您将学习如何在阿里云模型在线服务(PAI-EAS)一键部署基于开源模型通义千问的WebUI应用,以及使用WebUI和API进行模型推理。

通义千问-7B(Qwen-7B)是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制开发了基于大语言模型的AI助手Qwen-7B-Chat。

本教程部署通义千问WebUI示例效果如下所示:

image.png

基于本教程可以体验:

新用户可免费领取价值万元的人工智能平台PAI 试用资源;

学会如何快速在阿里云上创建模型在线服务;

学会如何在ESA中部署WebUI。


2. 使用PAI-EAS一键部署通义千问WebUI

2.1 准备环境与资源

2.1.1 领取模型在线服务PAI-EAS免费试用权益

前往活动页面,领取模型在线服务PAI-EAS产品免费试用资源包

image.png

2.1.2 部署模型

  1. 前往人工智能平台PAI控制台
  2. 开通人工智能PAI并创建默认工作空间。请参见开通并创建默认工作空间
  3. 在人工智能平台PAI控制台内,选择模型在线服务PAI-EAS,点击部署服务

image.png

  1. 部署方式选择-镜像部署AI-Web应用,镜像选择-PAI平台镜像  modelscope-inference

环境变量:参数参考下图

参数

描述

服务名称

自定义服务名称。本案例使用的示例值为:qwen_demo

部署方式

选择镜像部署AI-Web应用

镜像选择

选择PAI平台镜像>modelscope-inference>1.8.1

环境变量

MODEL_ID输入:qwen/Qwen-7B-Chat

TASK输入:chat

REVISION输入:v1.0.5

运行命令

服务运行命令:python app.py

输入端口号:8000

image.png

  1. 选择实例机型 ecs.gn7i-c8g1.2xlarge.limit  ,若无此机型库存可更换地域尝试;

在领取免费试用权益后(参考步骤1.1),试用活动tab分类下的机型支持免费试用;若不符合领用条件或免费试用机型无库存,可选择GPU分类下的GU30机型(ml.gu7i.c8m30.1-gu30),需自费,约8元/小时。

image.png

  1. 单击部署,进入PAI-EAS 模型在线服务,等待服务状态变更为运行中,表示模型部署完成。

说明一般在5分钟能够完成部署,具体与资源紧缺程度、服务负载以及配置有关。

2.2 使用WebUI进行模型推理

2.2.1 单击目标服务的服务方式> 查看Web应用,打开WebUI页面。

image.png

image.png

2.2.2 在WebUI页面,进行模型推理验证。


3. 资源清理及后续

3.1 清理

  • 领取抵扣包后,请在抵扣包额度和有效期内使用。如果抵扣包额度用尽或超出有效期,继续使用计算资源,会产生后付费账单。请前往节省计划页面,查看抵扣包剩余金额和过期时间。
  • 如果无需继续使用EAS服务,您可以按照以下操作步骤停止/删除模型服务。

image.png


如需技术支持,请在钉钉搜索群号「 52485000325」,加入群聊

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1303 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
1月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
253 120
|
2月前
|
自然语言处理 机器人 图形学
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
腾讯混元图像3.0,真的来了——开源,免费开放使用。 正式介绍一下:混元图像3.0(HunyuanImage 3.0),是首个工业级原生多模态生图模型,参数规模80B,也是目前测评效果最好、参数量最大的开源生图模型,效果可对…
697 2
腾讯混元图像3.0正式开源发布!80B,首个工业级原生多模态生图模型
|
1月前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
348 2
|
1月前
|
存储 机器学习/深度学习 人工智能
54_模型优化:大模型的压缩与量化
随着大型语言模型(LLM)的快速发展,模型规模呈指数级增长,从最初的数亿参数到如今的数千亿甚至万亿参数。这种规模扩张带来了惊人的能源消耗和训练成本,同时也给部署和推理带来了巨大挑战。2025年,大模型的"瘦身"已成为行业发展的必然趋势。本文将深入剖析大模型压缩与量化的核心技术、最新进展及工程实践,探讨如何通过创新技术让大模型在保持高性能的同时实现轻量化部署,为企业和开发者提供全面的技术指导。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
38_多模态模型:CLIP的视觉-语言对齐_深度解析
想象一下,当你看到一张小狗在草地上奔跑的图片时,你的大脑立刻就能将视觉信息与"小狗"、"草地"、"奔跑"等概念联系起来。这种跨模态的理解能力对于人类来说似乎是理所当然的,但对于人工智能系统而言,实现这种能力却经历了长期的技术挑战。多模态学习的出现,标志着AI从单一模态处理向更接近人类认知方式的综合信息处理迈出了关键一步。
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
521 14
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
494 1
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章

相关产品

  • 人工智能平台 PAI