elasticsearch 概述

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: elasticsearch 概述

初识elasticsearch

了解ES

elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码

  • 在电商网站搜索商品

ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的.所以在介绍倒排索引之前,我们先回顾正向索引

正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

  1. 用户搜索数据,条件是title符合"%手机%"
  2. 逐行获取数据,比如id为1的数据
  3. 判断数据中的title是否符合用户搜索条件
  4. 如果符合则放入结果集,不符合则丢弃。回到步骤1

因此在进行模糊查询大量数据时,便会效率低下,造成性能瓶颈,所以为了解决模糊查询效率低的问题,倒排索引便应运而生.

倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document:用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term:对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程
  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

对比优缺点:

正向索引

  • 优点:
  • 可以给多个字段创建索引
  • 根据索引字段搜索、排序速度非常快
  • 缺点:
  • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
  • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
  • 只能给词条创建索引,而不是字段
  • 无法根据字段做排序

es概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

mysql与elasticsearch

我们统一的把mysqlelasticsearch的概念做一下对比:

MySQL Elasticsearch 说明
Table Index 索引(index),就是文档的集合,类似数据库的表(table)
Row Document 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
Column Field 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQL DSL DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

安装es、kibana,分词器

安装

可以参考这篇文章

https://blog.csdn.net/studycodeday/article/details/134451772


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
存储 搜索推荐 数据可视化
|
存储 搜索推荐 数据可视化
一.全文检索ElasticSearch经典入门-全文索引&ES概述&ES安装&Kibana安装
一.全文检索ElasticSearch经典入门-全文索引&ES概述&ES安装&Kibana安装
|
搜索推荐 NoSQL Java
ElasticSearch全文搜索引擎 -Spring Boot操作ES(SpringData概述、Spring Data Elasticsearch、基本操作、ElasticSearch操作文档)
ElasticSearch全文搜索引擎 -Spring Boot操作ES(SpringData概述、Spring Data Elasticsearch、基本操作、ElasticSearch操作文档)
ElasticSearch全文搜索引擎 -Spring Boot操作ES(SpringData概述、Spring Data Elasticsearch、基本操作、ElasticSearch操作文档)
|
JSON 搜索推荐 Java
Elasticsearch 概述及安装
Elasticsearch 概述及安装
205 0
Elasticsearch 概述及安装
|
存储 JSON 数据可视化
ElasticSearch学习(一)——概述
ElasticSearch学习(一)——概述
206 0
ElasticSearch学习(一)——概述
|
存储 搜索推荐 算法
4.【Elasticsearch】Elasticsearch从入门到放弃-聚合概述
【Elasticsearch】Elasticsearch从入门到放弃-聚合概述
|
搜索推荐 Java Linux
ElasticSearch 概述及安装|学习笔记
快速学习 ElasticSearch 概述及安装
ElasticSearch 概述及安装|学习笔记
|
缓存 算法 关系型数据库
Elasticsearch Search API 概述与URI Search
Elasticsearch Search API 概述与URI Search
Elasticsearch Search API 概述与URI Search
|
存储 JSON 关系型数据库
Elasticsearch Mapping类型映射概述与元字段详解
Elasticsearch Mapping类型映射概述与元字段详解
Elasticsearch Mapping类型映射概述与元字段详解
|
JSON 缓存 关系型数据库
Elasticsearch Query DSL概述与查询、过滤上下文
Elasticsearch Query DSL概述与查询、过滤上下文

热门文章

最新文章

下一篇
无影云桌面