C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点

简介: 本文将介绍一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。通过对原始点集合进行切割和插值操作,得到平滑的曲线坐标点集合。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。

image.png

Chaikin算法——计算折线对应的平滑曲线坐标点

本文将介绍一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。通过对原始点集合进行切割和插值操作,得到平滑的曲线坐标点集合。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。

@[toc]

引言

在计算机图形学和数据可视化领域,平滑曲线的生成是一个重要的问题。平滑曲线可以使得数据更加易于理解和分析,同时也可以提高图形的美观性。折线是一种常见的曲线表示方法,但是折线本身具有较高的噪声和锯齿状的特点,需要进行平滑处理。本文提出了一种基于Chaikin曲线平滑处理的算法,可以将折线转化为平滑的曲线。


算法

算法流程

流程的具体步骤如下:

  1. 检查输入的坐标点集合的合法性,确保至少有3个坐标点。
  2. 对输入的参数进行范围约束,确保迭代次数大于等于1,张力因子在0到1之间。
  3. 将张力因子映射到0.05到0.45之间,以便在计算切割距离时使用。
  4. 迭代计算,使用Chaikin曲线平滑处理的方法对坐标点集合进行处理。
  5. 返回平滑后的曲线坐标点集合。
        /// <summary>
        /// 计算折线对应的平滑曲线坐标点
        /// </summary>
        /// <param name="points">坐标集合</param>
        /// <param name="tension">张力因子[0,1],用于控制曲线的平滑程度。张力因子越小时切割点会越靠近线段的起始点,反之会靠近线段的结束点。</param>
        /// <param name="iterationCount">迭代次数,用于控制曲线平滑的精度</param>
        /// <returns></returns>
        /// <exception cref="ArgumentException"></exception>
        private List<Point> SmoothCurveChaikin(Point[] points, float tension = 0.5f, byte iterationCount = 1)
        {
   
   
            // 坐标点合法性检查
            if (points == null || points.Length < 3)
            {
   
   
                throw new ArgumentException("至少需要3个坐标点。", nameof(points));
            }

            // 参数范围约束
            iterationCount = Math.Max(iterationCount, (byte)1);
            tension = Math.Max(tension, 0);
            tension = Math.Min(tension, 1);

            // 参数的限制在0到1之间是为了简化参数的使用和理解。将张力因子的取值范围映射到0到1之间,使得参数的范围更加直观和易于控制。
            // 通过将张力因子乘以0.4并加上0.05,可以将0到1之间的参数映射到0.05到0.45之间,以便在计算切割距离时使用。
            // 张力因子在这里用于控制曲线的平滑程度。具体来说,张力因子定义了线段半长切角距离的一个尺度,取值范围在0.05到0.45之间。
            // 当张力因子为0.5时,相当于使用了经典的Chaikin算法,即将每个线段切割成四分之一和四分之三的两个点。这样可以保持曲线的对称性。
            double cutdist = 0.05 + (tension * 0.4);

            // 迭代计算
            List<Point> lst = points.ToList();
            for (int i = 1; i <= iterationCount; i++)
            {
   
   
                lst = SmoothChaikin(lst, cutdist);
            }
            return lst;
        }

Chaikin曲线平滑处理

Chaikin曲线平滑处理是一种基于切割和插值的方法,通过对线段进行切割和插值操作,得到平滑的曲线。
image.png

具体步骤如下:

  1. 添加第一个点,即原始点集合的第一个点。
  2. 将每一个点拆分成前后两个点,通过计算切割距离参数和原始点的坐标进行插值计算。
  3. 添加插值计算得到的两个点。
  4. 添加最后一个点,即原始点集合的最后一个点。
  5. 返回平滑后的曲线坐标点集合。
        /// <summary>
        /// 对点集合进行Chaikin曲线平滑处理
        /// </summary>
        /// <param name="points">要进行平滑处理的曲线的原始点</param>
        /// <param name="cuttingDist">切割距离参数,用于定义线段切割的尺度。取值范围通常在0.05到0.45之间,用于控制曲线的平滑程度</param>
        /// <returns></returns>
        private List<Point> SmoothChaikin(List<Point> points, double cuttingDist)
        {
   
   
            // 添加第一个点
            List<Point> nl = new List<Point> {
   
    points[0] };

            // 将每一个点拆分成前后两个点
            Point q, r;
            for (int i = 0; i < points.Count - 1; i++)
            {
   
   
                q = new Point(
                    (int)Math.Round(((1 - cuttingDist) * points[i].X + cuttingDist * points[i + 1].X)),
                    (int)Math.Round(((1 - cuttingDist) * points[i].Y + cuttingDist * points[i + 1].Y))
                );

                r = new Point(
                    (int)Math.Round((cuttingDist * points[i].X + (1 - cuttingDist) * points[i + 1].X)),
                    (int)Math.Round((cuttingDist * points[i].Y + (1 - cuttingDist) * points[i + 1].Y))
                );
                nl.Add(q);
                nl.Add(r);
            }

            // 添加最后一个点
            nl.Add(points.Last());

            return nl;
        }

实验与结果

为了验证算法的有效性和可靠性,我们进行了两组测试。

测试1:验证不同迭代次数下的算法结果

测试步骤:

  1. 将张力因子设置为0.5。
  2. 调整迭代次数为1、2、3。
  3. 对比不同迭代次数下的算法结果。

01.gif

测试2:观察不同张力因子下的算法结果

测试步骤:

  1. 将迭代次数设置为1。
  2. 调整张力因子为0、0.2、0.4、0.6、0.8。
  3. 观察不同张力因子下的算法结果。

02.gif

本算法在不同的参数设置下进行了实验,得到了不同平滑程度和精度的曲线。实验结果表明,当张力因子较小时,切割点会靠近线段的起始点,曲线的平滑程度较低;当张力因子较大时,切割点会靠近线段的结束点,曲线的平滑程度较高。迭代次数的增加可以提高曲线的平滑精度,但也会增加计算的时间复杂度。实验结果还表明,本算法能够有效地平滑折线,并且具有较高的精度和可控性。


结论

本文介绍了一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。未来的工作可以进一步优化算法的性能和扩展算法的应用范围。


参考资料

  1. 2D Polyline Vertex Smoothing
相关文章
|
2月前
|
算法 搜索推荐 图计算
图计算中的社区发现算法是什么?请解释其作用和常用算法。
图计算中的社区发现算法是什么?请解释其作用和常用算法。
18 0
|
24天前
|
编解码 算法 定位技术
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
31 3
|
3月前
|
搜索推荐 算法 测试技术
C++归并排序算法的应用:计算右侧小于当前元素的个数
C++归并排序算法的应用:计算右侧小于当前元素的个数
|
2月前
|
算法
bellman_ford算法与dijkstra为什么dijkstra算法不能计算带有负权边图
bellman_ford算法与dijkstra为什么dijkstra算法不能计算带有负权边图
18 0
|
2月前
|
算法 搜索推荐 数据挖掘
图计算中的图算法有哪些常见的类型?请举例说明每种类型的算法。
图计算中的图算法有哪些常见的类型?请举例说明每种类型的算法。
21 0
|
2月前
|
算法 搜索推荐 Java
图计算中的PageRank算法是什么?请解释其作用和计算原理。
图计算中的PageRank算法是什么?请解释其作用和计算原理。
13 0
|
2月前
|
算法 搜索推荐 Java
图计算中的图剪枝算法是什么?请解释其作用和常用方法。
图计算中的图剪枝算法是什么?请解释其作用和常用方法。
11 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【python机器学习】K-Means算法详解及给坐标点聚类实战(附源码和数据集 超详细)
【python机器学习】K-Means算法详解及给坐标点聚类实战(附源码和数据集 超详细)
40 0
|
3月前
|
机器学习/深度学习 自然语言处理 算法
【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)
【Tensorflow深度学习】优化算法、损失计算、模型评估、向量嵌入、神经网络等模块的讲解(超详细必看)
45 1
|
3月前
|
算法 计算机视觉
基于WTMM算法的图像多重分形谱计算matlab仿真
基于WTMM算法的图像多重分形谱计算matlab仿真

相关产品