贪心算法-分数背包问题(Python实现)

简介: 贪心算法-分数背包问题(Python实现)
import ioTool
def beibao(s,m,b):
    bb = 0  # 现在的背包容量
    beibaoA = [] #放入背包的东西
    #循环的i的范围不能超过传过来的数量,并且背包的容量也不能超过预定的数量(例如:50,则只能小于等于50)
    i = 0
    while i < len(s) and bb<=b:
        #判断是否已经放入背包了
        if len(beibaoA)  != 0:
            #背包里现在没装,并且数量也不够
            if beibaoA.__contains__(s[i]) == False  and bb<b and (bb + s[i]) <= b:
                beibaoA.append(s[i])  # 暂存
                bb = bb + s[i]
            elif beibaoA.__contains__(s[i]) == False  and bb<b and (bb + s[i]) >= b:
                num = b - bb
                bb = bb + num
                beibaoA.append(num)
        else:
            beibaoA.append(s[i])  # 暂存
            bb = bb + s[i]
        i += 1
    return beibaoA,bb
if __name__ == '__main__':
    # 价值 / 重量    价值比从高低排序,,没超过往里装,超过了就不装了。  分数背包
    s = [ 10, 20, 30]  # 重量
    m = [60, 100, 120]  # 价值
    b = 50  # 背包总容量
    k = 0
    beibao  = beibao(s,m,b)
    print("背包中存入的:", beibao[0])
    print("背包的容量:", beibao[1])
    for i in range(len(s)):
        print("从:商品",i,"取:",beibao[0][i])
    ioTool.writeLine(beibao, "output2.txt")

结果

目录
相关文章
|
13天前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
40 2
动态规划算法学习三:0-1背包问题
|
15天前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
23 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
2月前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
99 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
4天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
89 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
12天前
|
算法 Python
【10月更文挑战第9天】「Mac上学Python 18」小学奥数篇4 - 分数加减法
本篇将通过 Python 和 Cangjie 双语解决简单的分数加减法问题,帮助学生理解分数的运算规则,并学会用编程解决数学计算问题。
51 1
|
12天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
29 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
83 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
77 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
19天前
|
存储 算法
算法之背包问题
本文讨论了可分背包问题和0-1背包问题的区别及解决方法,其中可分背包问题可以使用贪心算法解决,而0-1背包问题则通常采用动态规划方法来找到最大价值的解决方案。
37 0
算法之背包问题