基于LUT查找表方法的图像gamma校正算法FPGA实现,包括tb测试文件和MATLAB辅助验证

简介: 基于LUT查找表方法的图像gamma校正算法FPGA实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

9e9c1f63d0d0561bb76944f7c0ec3920_82780907_202311282302190273355821_Expires=1701184339&Signature=YRaV0cipfX%2FAAIM3%2FQvMruoF1F8%3D&domain=8.jpeg

将gamma=2.2和gamma=1/2.2的数据分别导入到matlab进行对比:

b133440f8c906c44e07b72cf73d8490a_82780907_202311282302280366338912_Expires=1701184348&Signature=Sf3jYO5L%2BtKVQ5Ipa4R%2FULrCaVc%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于LUT查找表方法的图像gamma校正算法是一种用于改善图像显示效果的技术,它通过对图像像素的灰度值进行非线性变换,使得图像在显示设备上的表现更接近人眼的视觉特性。

   gamma校正算法的核心思想是根据人眼的视觉特性对图像像素的灰度值进行非线性变换。人眼对图像的亮度感知并不是线性的,而是对暗部和亮部的敏感度不同,对暗部的敏感度更高。因此,gamma校正算法通过对暗部像素进行较大的灰度值调整,对亮部像素进行较小的灰度值调整,使得图像在显示设备上的表现更接近人眼的视觉特性。

gamma校正算法的数学公式如下:

O = 255/255^(γ)*Image^(γ)

   其中,I表示输入像素的灰度值,O表示输出像素的灰度值,γ表示gamma值,通常取值为2.2。该公式的含义是,将输入像素的灰度值I进行γ次方运算,得到输出像素的灰度值O。

    在具体实现中,为了加快运算速度,通常会使用查找表(LUT)来存储预计算的结果。假设输入像素的灰度值范围为0~255,则可以生成一个大小为256的查找表,表中每个元素的值为对应灰度值的γ次方运算结果。在实现时,只需要输入像素的灰度值作为查找表的索引,即可得到对应的输出像素的灰度值。

基于LUT查找表方法的图像gamma校正算法的FPGA实现可以采用以下步骤:

定义输入和输出图像的数据格式,例如8位灰度图像,可以使用单个8位寄存器表示每个像素的灰度值。
定义一个大小为256的查找表,表中每个元素的值为对应灰度值的1/γ次方运算结果。可以使用FPGA中的ROM或者CAM模块来实现查找表。
读取输入图像的每个像素的灰度值,并将其作为查找表的索引,得到对应的输出像素的灰度值。可以使用FPGA中的单端口RAM或者双端口RAM来实现像素值的存储和读取。
将输出像素的灰度值写入到输出图像中,完成一次gamma校正。
需要注意的是,由于FPGA的并行性,可以将整个图像的像素并行处理,实现高速的gamma校正。此外,也可以使用流水线结构、多级查找表等技术进一步提高计算速度和精度。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] Buffer [0:100000];
reg [7:0] II;
wire [7:0] o_gamma1_jiaoz;
wire [7:0] o_gamma2_jiaoz;
integer fids,idx=0,dat;

//D:\FPGA_Proj\FPGAtest\code_proj\project_1\project_1.srcs\sources_1
initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code_proj\test0.bmp","rb");
dat = $fread(Buffer,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
II<=Buffer[idx];
idx<=idx+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I (II),
.o_gamma1_jiaoz (o_gamma1_jiaoz),
.o_gamma2_jiaoz (o_gamma2_jiaoz)
);
integer fout1;
integer fout2;
initial begin
fout1 = $fopen("SAVEDATA1.txt","w");
fout2 = $fopen("SAVEDATA2.txt","w");
end

always @ (posedge i_clk)
begin
if(idx<=66617)
$fwrite(fout1,"%d\n",o_gamma1_jiaoz);
else
$fwrite(fout1,"%d\n",0);

if(idx<=66617)
$fwrite(fout2,"%d\n",o_gamma2_jiaoz);
else
$fwrite(fout2,"%d\n",0);

end

endmodule

```

相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
28 15
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
18小时前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
1月前
|
数据可视化 前端开发 测试技术
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
|
5天前
|
JSON 前端开发 测试技术
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
46 10
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
|
3天前
|
JSON 前端开发 API
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡
26 5
以项目登录接口为例-大前端之开发postman请求接口带token的请求测试-前端开发必学之一-如果要学会联调接口而不是纯写静态前端页面-这个是必学-本文以优雅草蜻蜓Q系统API为实践来演示我们如何带token请求接口-优雅草卓伊凡