AI 大师云集!CCAI 2017 中国人工智能大会盛大开幕

简介: 作为由中国人工智能学会发起的人工智能领域顶级盛会,CCAI 代表着国内最高水准的产学研技术交流。本次大会更是在前两届成功经验的基础上,将全球人工智能领域的顶级专家、学者和产业界优秀人才汇聚一堂,围绕着当前 AI 热点话题、核心技术,以及与会者共同关注的科学问题进行深入交流和探讨,并针对语言智能与应用、智能金融、人工智能科学与艺术、人工智能青年发展四个主题设立专题论坛,对于我国人工智能的科学研究及在各行业落地有着极大的推进作用。
7月22日-23日,在中国科学技术协会、中国科学院的指导下,由中国人工智能学会、阿里巴巴集团 & 蚂蚁金服主办,CSDN、中国科学院自动化研究所承办,,云栖社区独家直播的2017 中国人工智能大会(CCAI 2017)在杭州国际会议中心盛大召开。

作为由中国人工智能学会发起的人工智能领域顶级盛会,CCAI 代表着国内最高水准的产学研技术交流。本次大会更是在前两届成功经验的基础上,将全球人工智能领域的顶级专家、学者和产业界优秀人才汇聚一堂,围绕着当前 AI 热点话题、核心技术,以及与会者共同关注的科学问题进行深入交流和探讨,并针对语言智能与应用、智能金融、人工智能科学与艺术、人工智能青年发展四个主题设立专题论坛,对于我国人工智能的科学研究及在各行业落地有着极大的推进作用。
 
本次大会为期两天,以“AI 大师主题报告”、“专题论坛群雄论剑”的方式展开,主题报告环节,由香港科技大学计算机系主任杨强,蚂蚁金服首席数据科学家漆远,南京大学教授周志华,以及中国科学院自动化研究所研究员宗成庆分别主持。中国工程院院士、中国人工智能学会理事长李德毅,中国科学院院士、中国人工智能学会副理事长谭铁牛,阿里巴巴技术委员会主席王坚分别发表大会致辞,总结过去一年产学研界在人工智能领域取得的丰硕成果,并热忱地欢迎所有与会者的到来。

随后,中国人工智能学会理事长李德毅,香港科技大学计算机系主任杨强,澳大利亚新南威尔士大学教授 Toby Walsh,蚂蚁金服首席数据科学家漆远,德国人工智能研究中心(DFKI)科技总监 Hans Uszkoreit,美国微软雷德蒙研究院首席研究员周登勇,南加州大学副教授 Fei Sha,日本理化学研究所先进智能研究中心主任 Masashi Sugiyama,俄勒冈州立大学教授、AAAI 前主席 Thomas G. Dietterich 分别发表了精彩的主题报告。

大师云集,世界级学术带头人齐聚,权威分享人工智能的创新发展
大会现场,9 位海内外工智能专家分别从人工智能技术的两面性、L3 自动驾驶挑战、深度学习迁移模型、金融智能实践,到构建强健的人工智能、机器学习在商务智能中的创新应用、众包中的统计推断与激励机制、小数据方法模型以及弱监督机器学习研究最新进展等进行了深刻解读与分享,在拓展人工智能边界的同时也为其未来发展及应用实践指明了方向。

大会首日第一个主题报告来自中国人工智能学会理事长李德毅。在主题为《L3 的挑战与量产》的报告中,李德毅重点讨论了当前 L3 自动驾驶汽车所面临的挑战以及量产问题,并表示定制量产 L3 应先用于特定场景,且自动驾驶汽车能否取代驾驶员掌控,取决于其能否处置特定场景下的意外情况,能否发出求助信息要求人工干预,或者在迫不得已时作出最小损失决策。

香港科技大学计算机系主任杨强则从深度学习模型的共性问题谈起,在主题报告《深度学习的迁移模型》中,深度剖析如何使得深度学习模型变得更加可靠,使得在数据变化的情况下,模型还可以持续可用,更通过不同的应用案例多角度地阐述迁移学习的深度模型所带来的优点。

澳大利亚新南威尔士大学教授、AAAI 执行委员会成员 Toby Walsh 的报告则更聚焦于如何发展可用于造福社会的技术,以《人工智能造福人类的那一面》为主题,结合实际研究案例,详细阐述人工智能技术的两面性,以及如何来帮助现有的食品银行,以及器官银行。

蚂蚁金服副总裁、首席数据科学家漆远发表《金融智能的发展与应用》主题报告,在大会现场具体介绍了蚂蚁金服在金融服务场景中如何发展 AI 技术——从新的深度学习模型到深度学习与图关系的结合等——来应对这些挑战,分析如何将新技术创新应用在场景中,以解决金融服务的关键问题,如风控与智能助理等,并且就当下金融智能面临的开放性问题进行了探讨。

第二天的主题报告则都由来自海外的 AI 领域翘楚带来。其中,德国人工智能研究中心(DFKI)科技总监 Hans Uszkoreit 分享了《机器学习在商务智能中的创新应用》,介绍如何分析各种来源的数据,用于执行众多的商务智能任务,如供应链监控、市场调研和产品管理等。其所讨论的方法包含了不同类型的机器学习和基于知识的自然语言理解技术,充分利用知识图表和各种结构化数据源,实现信息的互为补充。在此方法中,文本分析管道被嵌入在开源大数据分析平台 Apache Flink 中,能支持近乎实时地快速处理海量数据。

美国微软雷德蒙研究院首席研究员周登勇(Dengyong Zhou)发表《众包中的统计推断与激励机制》主题演讲,具体总结了微软雷德蒙研究院过去几年在基本的众包问题的研究与工程上的进展。具体来说,主要集中在群体智慧与激励机制两个方面。在技术上更是融合了机器学习、统计推断、博弈论、心理学以及人机交互,目前,周登勇及其团队对于众包的研究工作已经已经应用到了微软的诸多产品。

南加州大学副教授 Fei Sha 则从《大数据如何帮助“小数据”?》切入,介绍其所在团队在该方向的研究成果,并通过 3 个场景阐述多任务学习、领域适应及零样本学习。该主题旨在从其他任务和相关大数据集中寻求帮助,以研究有关小数据的方法和模型。并且,报告还探讨了相关方法的制定,以及如何将它们运用到实际问题中。

日本理化学研究所先进智能研究中心主任 Masashi Sugiyama 发表《弱监督机器学习研究新进展》主题演讲,总结了其与团队在监督弱化分类方面的最新研究进展,包括两组未标记数据分类、正面数据和未标记数据分类、半监督分类的新方法以及补充标签分类。最后,还简要地介绍了 RIKEN 高级智能中心项目。
在主题报告的最后,俄勒冈州立大学教授、AAAI 前主席 Thomas G. Dietterich 带来了《构建强健的人工智能:原因及方式》演讲。当前,人工智能技术正在各种应用中广泛使用。由于其中一些应用可能会对人类生活或经济造成威胁,因此我们需要寻找相应的算法和方法来确保人工智能系统行为安全。本报告即介绍了用于保证安全行为的方法,并综合考虑“已知的未知”情况(对不确定情形有一个明确的模型)以 及“未知的未知”情况(模型不完整或错误)。

群雄论剑,全球顶级 AI 专家共同探讨人工智能难题及边界拓展
除了精彩纷呈的主题报告,两天大会还设置了“语言智能与应用”、“智能金融”、“人工智能科学与艺术”、“人工智能青年”4 大专题论坛,近 30 位发言嘉宾就人工智能前沿研究和产业实战展开对话,并回答与会听众的深度提问。

7 月 22 日下午的语言智能与应用论坛,由中国科学院自动化研究所研究员宗成庆担任论坛主席,论坛嘉宾包括中国科学技术大学计算机学院教授、CCF 会士陈恩红,阿里云智能语音交互技术总监初敏,香港中文大学工程学院副院长黄锦辉,北京云知声信息技术有限公司创始人梁家恩,奇点机智联合创始人、ACL Fellow 林德康,哈尔滨工业大学教授刘挺,上海交通大学计算机系研究员、思必驰公司首席科学家俞凯。大家针对若干问题展开了深入讨论,比如目前自然语言处理面临的最大问题是什么?什么方法或技术有可能成为深度学习之后的黑马?学术界和企业界各自关注 NLP 技术的哪些方面?产学研合作的成功模式应该是什么样子?在此过程中所闪现的真知灼见对正在进行相关领域研究及技术开发的参会者提供了非常有益的参考。

智能金融论坛的主席是蚂蚁金服人工智能部技术总监李小龙,论坛嘉宾包括上海交通大学计算机系致远讲席教授邓小铁,香港智能金融科技有限公司(FDT-AI)联合创始人兼 CEO 柳崎峰,乔治亚理工学院金融学教授、Alton M. Costley 主席 Sudheer Chava,普林斯顿大学运筹与金融工程系助理教授王梦迪,香港中文大学计算机系副教授张胜誉。大会现场重点讨论了如何运用大数据、云计算和人工智能来降低金融成本,提高支付、投资、贷款、理财、保险、事件分析、客服等各个方面的自动化和智能化水平,从而提高金融效率并普惠更多的人群;如何采用大规模机器学习和海量数据结合,利用深度学习、增强学习、图计算、知识图谱等前沿方法,有效识别风险,提升金融风控能力;以及如何应用博弈论进行金融市场机制和定价设计,在公平合理的基础上激发市场活力等,并且展望了智能金融的下一步发展前景。

7 月 23 日下午的人工智能科学与艺术论坛则完全由女性科技工作者和专家组成,由中国科学院自动化研究所研究员、机器人中心副主任乔红担任主席,论坛嘉宾包括南加州大学计算机系名誉副教授、机器学习中心主任刘燕,清华大学计算机系教授、全球创新学院院长史元春,北京航空航天大学计算机学院副院长王蕴红,中国科学院前沿科学与教育局副局长王颖,清华大学计算机科学与技术系副教授张敏,《中国科学报》主任记者王静现场以独特而专业的视角审视人工智能技术进步,辩析数据驱动决策中所起的作用,共同探索人工智能科学与艺术结合的可能性。

人工智能青年论坛则由清华大学计算机系长聘副教授朱军和今日头条科学家、人工智能实验室总监李磊共同担任联席主席,大会现场,在李磊的主持下,美国华盛顿大学教授、犀牛科技创始人兼总裁陈一昕,清华大学计算机系副教授黄民烈,中国科学院计算技术研究所副研究员兰艳艳,浙江大学计算机学院教授潘纲,阿里巴巴人工智能实验室研究员、杰出科学家王刚,东南大学计算机科学与工程学院教授张敏灵分享了他们的最新研究成果,并对人工智能的未来发展进行深入讨论。

历经三届沉淀,中国人工智能大会 CCAI 持续汇聚了全球人工智能领域的顶级专家、学者和产业界优秀人才,不仅是中国国内级别最高、规模最大的人工智能大会,更已成为国内人工智能领域产、学、研紧密结合的高端前沿交流平台。而本次 CCAI 大会在往届基础上,不仅集结了 AI 领域巾帼英雄、青年英才,更有多位世界级学术带头人重磅亮相并发表精彩演讲。2017 中国人工智能大会,以最具前瞻性的视野和国际化的内容组织、最前沿的国内外人工智能的技术趋势和最贴近产业界的一流行业盛会,对推动我国人工智能的发展与进步有着极大的价值和影响。

CCAI 2017 更多精彩内容,请关注大会官网:http://ccai.caai.cn/

目录
相关文章
|
2月前
|
人工智能 运维 安全
阿里云通过ISO42001人工智能管理认证,引领AI治理推动协同共治
9月19日,在杭州云栖大会「AI治理与安全论坛」上,阿里云宣布通过人工智能技术的全生命周期管理ISO42001体系认证。该项认证由国际标准化组织(ISO)和国际电工委员会(IEC)制定,是第一部可认证的人工智能国际管理体系标准。
128 14
|
13天前
|
机器学习/深度学习 人工智能 算法
人工智能与医疗健康:AI如何改变生命科学
【10月更文挑战第31天】人工智能(AI)正深刻改变医疗健康和生命科学领域。本文探讨AI在蛋白质结构预测、基因编辑、医学影像诊断和疾病预测等方面的应用,及其对科研进程、医疗创新、服务效率和跨学科融合的深远影响。尽管面临数据隐私和伦理等挑战,AI仍有望为医疗健康带来革命性变革。
68 30
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
1分钟认识:人工智能claude AI _详解CLAUDE在国内怎么使用
Claude AI 是 Anthropic 开发的先进对话式 AI 模型,以信息论之父克劳德·香农命名,体现了其在信息处理和生成方面的卓越能力
|
21天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
47 6
|
23天前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
23天前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。
|
2月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
|
1月前
|
人工智能 算法 安全
人工智能伦理与监管:构建负责任的AI未来
【10月更文挑战第3天】随着人工智能(AI)技术的快速发展,其在社会各领域的应用日益广泛。然而,AI的广泛应用也带来了一系列伦理和监管挑战。本文旨在探讨AI的伦理问题,分析现有的监管框架,并提出构建负责任AI未来的建议。同时,本文将提供代码示例,展示如何在实践中应用这些原则。
250 1
|
1月前
|
人工智能 自然语言处理 安全
Gemini 人工智能:谷歌AI重磅来袭!好消息,国内可用
Gemini 是 Google 🧠 开发的革命性人工智能模型,旨在打造一个功能强大的多模态 AI 系统。
|
1月前
|
机器学习/深度学习 人工智能 数据可视化
深度学习之可解释人工智能(Explainable AI,XAI)
可解释人工智能(XAI)是一个旨在使AI决策过程透明和可理解的研究领域。随着AI和机器学习技术在多个行业中的应用变得越来越广泛,其决策过程的透明度和可解释性变得极其重要。
50 0