C++前缀和算法的应用:摘水果 原理源码测试用例

简介: C++前缀和算法的应用:摘水果 原理源码测试用例

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

题目

在一个无限的 x 坐标轴上,有许多水果分布在其中某些位置。给你一个二维整数数组 fruits ,其中 fruits[i] = [positioni, amounti] 表示共有 amounti 个水果放置在 positioni 上。fruits 已经按 positioni 升序排列 ,每个 positioni 互不相同 。

另给你两个整数 startPos 和 k 。最初,你位于 startPos 。从任何位置,你可以选择 向左或者向右 走。在 x 轴上每移动 一个单位 ,就记作 一步 。你总共可以走 最多 k 步。你每达到一个位置,都会摘掉全部的水果,水果也将从该位置消失(不会再生)。

返回你可以摘到水果的 最大总数 。

示例 1:

输入:fruits = [[2,8],[6,3],[8,6]], startPos = 5, k = 4

输出:9

解释:

最佳路线为:

  • 向右移动到位置 6 ,摘到 3 个水果
  • 向右移动到位置 8 ,摘到 6 个水果
    移动 3 步,共摘到 3 + 6 = 9 个水果
    示例 2:
    输入:fruits = [[0,9],[4,1],[5,7],[6,2],[7,4],[10,9]], startPos = 5, k = 4
    输出:14
    解释:
    可以移动最多 k = 4 步,所以无法到达位置 0 和位置 10 。
    最佳路线为:
  • 在初始位置 5 ,摘到 7 个水果
  • 向左移动到位置 4 ,摘到 1 个水果
  • 向右移动到位置 6 ,摘到 2 个水果
  • 向右移动到位置 7 ,摘到 4 个水果
    移动 1 + 3 = 4 步,共摘到 7 + 1 + 2 + 4 = 14 个水果
    示例 3:
    输入:fruits = [[0,3],[6,4],[8,5]], startPos = 3, k = 2
    输出:0
    解释:
    最多可以移动 k = 2 步,无法到达任一有水果的地方

参数范围

1 <= fruits.length <= 105

fruits[i].length == 2

0 <= startPos, positioni <= 2 * 105

对于任意 i > 0 ,positioni-1 < positioni 均成立(下标从 0 开始计数)

1 <= amounti <= 104

0 <= k <= 2 * 105

分析

原理

只需要左移(右移)一次。假定左移了两次,分别移动了x1,x2,假定x1<x2。则不移动x1,水果不会少。

分四种情况:

一,左移到底。

二,先左移,后右移。

三,右移到底。

四,先右移,再左移。

一是四的特殊请,三是二的特殊情况。

步骤

一,先获取前缀和。

二,枚举左移。右移为0或负数,忽视,因为劣于左移到底。k为0是,此条不符合。

三,枚举右移。

注意

坐标无限,但前缀和有限[0,iMaxPos]。

左移后的坐标 可能小于0
左移后的坐标 ** 可能大于iMax**
右移后的坐标 可能大于iMax
k为0时要左特殊处理。

变量解释

vNum 各坐标水果数量
vSum /vSum[i]记录[0,i)草莓的总数量
iMoveLeft 左移距离
iMoveRight 右移距离
left 移动到的最左坐标
right 移动到最右坐标

代码

核心代码

class Solution {
public:
int maxTotalFruits(vector<vector>& fruits, int startPos, int k) {
const int iMaxPos = fruits.back()[0];
vector vNum(iMaxPos + 1);
for (const auto&v : fruits)
{
vNum[v[0]] = v[1];
}
vector vSum = { 0 };//vSum[i]记录[0,i)草莓的总数量
for (int i =0; i <= iMaxPos; i++)
{
vSum.emplace_back(vSum.back() + vNum[i]);
}
int iRet = 0;
  for (int iMoveLeft = 0; iMoveLeft <= k / 2; iMoveLeft++)
  {//先左后右
    const int iMoveRight = k - iMoveLeft * 2;
    if (iMoveRight < 0)
    {
      continue;
    }
    const int left = max(0, startPos - iMoveLeft);
    if (left > iMaxPos)
    {
      continue;
    }
    const int right = min(iMaxPos, startPos + iMoveRight);
    //可收集[left,right+1)的草莓
    const int cur = vSum[right + 1] - vSum[left];
    iRet = max(iRet, cur);
  }
  for (int iMoveRight = 0; iMoveRight <= k / 2; iMoveRight++)
  {//先左后右
    const int iMoveLeft = k - iMoveRight * 2;
    if (iMoveLeft < 0)
    {
      continue;
    }
    const int left = max(0, startPos - iMoveLeft);
    if (left > iMaxPos)
    {
      continue;
    }
    const int right = min(iMaxPos, startPos + iMoveRight);
    //可收集[left,right+1)的草莓
    const int cur = vSum[right + 1] - vSum[left];
    iRet = max(iRet, cur);
  }
  return iRet;
}

};

测试用例

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
Solution slu;
vector<vector> fruits;
int startPos = 0;
int k = 0;
int res;
fruits = {{2, 8}, {6, 3}, {8, 6}};
startPos =5 ;
k =4 ;
res = slu.maxTotalFruits(fruits, startPos, k);
Assert(9, res);
fruits = {{0, 9}, {4, 1}, {5, 7}, {6, 2}, {7, 4}, {10, 9}};
startPos = 5;
k = 4;
res = slu.maxTotalFruits(fruits, startPos, k);
Assert(14, res);
fruits = { {0,10000} };
startPos = 20000;
k = 20000;
res = slu.maxTotalFruits(fruits, startPos, k);
Assert(10000, res);
fruits = { {20000,10000} };
startPos = 20000;
k = 0;
res = slu.maxTotalFruits(fruits, startPos, k);
Assert(10000, res);
//CConsole::Out(res);

}

2023年3月旧代码

class Solution {
public:
int maxTotalFruits(vector<vector>& fruits, int startPos, int k) {
m_c = fruits.size();
int iMaxLeftIndex = std::lower_bound(fruits.begin(), fruits.end(),startPos, [](const vector& v, int i)
{
return v[0] < i;
}) - fruits.begin() - 1;
std::map<int, int> mLeftMoveNum;
for (int i = iMaxLeftIndex ; (i >= 0) && (startPos - fruits[i][0] <= k); i–)
{
const int iLeftMove = startPos - fruits[i][0];
mLeftMoveNum[iLeftMove] = fruits[i][1] + (mLeftMoveNum.empty() ? 0 : mLeftMoveNum.rbegin()->second);
}
int iMinRightIndex = iMaxLeftIndex + 1;
int iRet = 0;
if ((iMinRightIndex < m_c) && (fruits[iMinRightIndex][0] == startPos))
{
iRet += fruits[iMinRightIndex][1];
iMinRightIndex++;
}
std::map<int, int> mRightMoveNum;
for (int i = iMinRightIndex; (i < m_c) && (fruits[i][0] - startPos <= k); i++)
{
const int iRightMove = fruits[i][0] - startPos;
mRightMoveNum[iRightMove] = fruits[i][1] + (mRightMoveNum.empty() ? 0 : mRightMoveNum.rbegin()->second);
}
int iMaxExcludeStart = 0;
   for (int left = 0; left <= k / 2; left++)
   {
     const int right = k - left * 2;
     int iCur = 0;
     {
       auto itLeft = mLeftMoveNum.upper_bound(left);
       if (mLeftMoveNum.begin() != itLeft)
       {
         iCur += (--itLeft)->second;
       }
     }
     {
       auto itRight = mRightMoveNum.upper_bound(right);
       if (mRightMoveNum.begin() != itRight)
       {
         iCur += (--itRight)->second;
       }
     }
     iMaxExcludeStart = max(iMaxExcludeStart, iCur);
   }
   for (int right = 0; right <= k / 2; right++)
   {
     const int left = k - right * 2;
     int iCur = 0;
     {
       auto itLeft = mLeftMoveNum.upper_bound(left);
       if (mLeftMoveNum.begin() != itLeft)
       {
         iCur += (--itLeft)->second;
       }
     }
     {
       auto itRight = mRightMoveNum.upper_bound(right);
       if (mRightMoveNum.begin() != itRight)
       {
         iCur += (--itRight)->second;
       }
     }
     iMaxExcludeStart = max(iMaxExcludeStart, iCur);
   }
   iRet += iMaxExcludeStart;
   return iRet;
 }
 int m_c;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

| 鄙人想对大家说的话

|

|-|

|闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。|

| 墨家名称的来源:有所得以墨记之。 |

|如果程序是一条龙,那算法就是他的是睛|

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境:

VS2022 C++17

相关文章
|
11天前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
36 1
|
23天前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
2月前
|
分布式计算 并行计算 算法
MapReduce在实现PageRank算法中的应用
总结来说,在实现PageRank算法时使用MapReduce能够有效地进行大规模并行计算,并且具有良好的容错性和可扩展性。
149 76
|
20天前
|
存储 监控 算法
公司员工电脑监控软件剖析:PHP 布隆过滤器算法的应用与效能探究
在数字化办公的浪潮下,公司员工电脑监控软件成为企业管理的重要工具,它能够帮助企业了解员工的工作状态、保障数据安全以及提升工作效率。然而,随着监控数据量的不断增长,如何高效地处理和查询这些数据成为了关键问题。布隆过滤器(Bloom Filter)作为一种高效的概率型数据结构,在公司员工电脑监控软件中展现出独特的优势,本文将深入探讨 PHP 语言实现的布隆过滤器算法在该软件中的应用。
36 1
|
1月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
47 4
|
2月前
|
存储 算法 安全
企业员工数据泄露防范策略:基于 C++ 语言的布隆过滤器算法剖析[如何防止员工泄密]
企业运营过程中,防范员工泄密是信息安全领域的核心议题。员工泄密可能致使企业核心数据、商业机密等关键资产的流失,进而给企业造成严重损失。为应对这一挑战,借助恰当的数据结构与算法成为强化信息防护的有效路径。本文专注于 C++ 语言中的布隆过滤器算法,深入探究其在防范员工泄密场景中的应用。
54 8
|
2月前
|
存储 监控 算法
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
43 3
|
3月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
1月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
57 12
|
2月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
59 16