Spark2:运行架构

简介: Spark2:运行架构

一、运行架构

1.概念

• Application: 用户基于spark的代码,由一个Driver和多个Executor组成。

• Executor: 在工作节点(如standalone的Worker和yarn的NM)上的进程,可以运行task,也可以将数据保存在内存和磁盘中。每个应用程序都有自己的Executors。

• Task: 最小的工作单元,会被送往executor执行。它也是Stage 的子集,以并行度(分区数)来衡量,分区数是多少,则有多少个task,一个 task 对应一个RDD分区 ,如果数据来自HDFS,一个分区的数据就是一个 split 的数据。

• Job: 一个Job有许许多多的Task,每一个Action操作都会触发一个Job,可以在driver日志中观察到。

• Stage: 是Job的子集,一个job被拆分成许多的Stage,一个Stage包含多个Task。Stage是提交作业的最小单位,Stage之间彼此依赖。Stage回到shuffle会被拆分。可以在driver日志中观察到。

2.运行流程

Spark组件将用户的应用程序分解为内部执行任务并提供执行容器。

  • Driver Program (驱动程序)
  • Executor

资源管理为Spark组件提供资源管理和调度。

  • YARN(通用)
  • Standalone(Spark自带)

整体流程

当一个Spark应用被提交时,首先需要为这个应用构建起基本的运行环境,即由任务控制节点(Driver)创建一个SparkContext,由SparkContext负责和资源管理器(Cluster Manager)的通信以及进行资源的申请、任务的分配和监控等。SparkContext会向资源管理器注册并申请运行Executor的资源;

资源管理器为Executor分配资源,并启动Executor进程,Executor运行情况将随着“心跳”发送到资源管理器上;

SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAG调度器(DAGScheduler)进行解析,将DAG图分解成多个“阶段”(每个阶段都是一个任务集),并且计算出各个阶段之间的依赖关系,然后把一个个“任务集”提交给底层的任务调度器(TaskScheduler)进行处理;Executor向SparkContext申请任务,任务调度器将任务分发给Executor运行,同时,SparkContext将应用程序代码发放给Executor;

任务在Executor上运行,把执行结果反馈给任务调度器,然后反馈给DAG调度器,运行完毕后写入数据并释放所有资源。

注意事项

二、Spark集群模式

集群模式Cluster Mode:将Spark运行应用在YARN集群或者框架自身集群Standalone,及Apache Mesos集群,启动多个JVM进程运行Task程序。 (http://spark.apache.org/docs/2.4.3

三、执行组件

Spark核心组件包括RDD、Scheduler、Storage、Shuffle四部分。

1.RDD

RDD是Spark最核心最精髓的部分,spark将所有数据都抽象成RDD。

持久化

2.Scheduler

Scheduler是Spark的调度机制,分为DAGScheduler和TaskScheduler。

3.Storage

Storage模块主要管理缓存后的RDD、shuffle中间结果数据和broadcast数据。

4.Shuffle

Shuffle分为Hash方式和Sort方式,两种方式的shuffle中间数据都写本地盘。

5.与Hadoop的区别

Reduce操作生成的结果,spark是存放在内存中的,MapReduce是写HDFS的。所以用户的操作中涉及到的reduce操作越多,Spark比MapReduce写HDFS的次数就越少,Spark的性能优势就越大。

参考

https://zhuanlan.zhihu.com/p/162713938

教授大数据内存的黄老师的PPT

目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
158 6
|
24天前
|
分布式计算 大数据 Apache
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
88 3
|
1月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
26 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
1月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
66 1
|
1月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
50 0
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
40 0
|
1月前
|
SQL 存储 分布式计算
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
41 0
|
11天前
|
缓存 负载均衡 JavaScript
探索微服务架构下的API网关模式
【10月更文挑战第37天】在微服务架构的海洋中,API网关犹如一座灯塔,指引着服务的航向。它不仅是客户端请求的集散地,更是后端微服务的守门人。本文将深入探讨API网关的设计哲学、核心功能以及它在微服务生态中扮演的角色,同时通过实际代码示例,揭示如何实现一个高效、可靠的API网关。
|
10天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
10天前
|
Dubbo Java 应用服务中间件
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
26 1
服务架构的演进:从单体到微服务的探索之旅
下一篇
无影云桌面