自然语言处理(一):RNN

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 自然语言处理(一):RNN

循环神经网络(Recurrent Neural Network,RNN)是一个非常经典的面向序列的模型,可以对自然语言句子或是其他时序信号进行建模。进一步讲,它只有一个物理RNN单元,但是这个RNN单元可以按照时间步骤进行展开,在每个时间步骤接收当前时间步的输入和上一个时间步的输出,然后进行计算得出本时间步的输出。

Why

  1. CNN 需要固定长度的输入、输出,RNN 的输入和输出可以是不定长且不等长的
  2. CNN 只有 one-to-one 一种结构,而 RNN 有多种结构,如下图:

Model

  • 简单模型示例

循环神经网络的隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

  • RNN时间线展开

$t$ 时刻的输入,不仅是$Xt$,还应该包括上一个时刻所计算的 $S{t-1}$ 。

  • 使用公式表示

示例

下面我们举个例子来讨论一下,如图所示,假设我们现在有这样一句话:”我爱人工智能”,经过分词之后变成”我,爱,人工,智能”这4个单词,RNN会根据这4个单词的时序关系进行处理,在第1个时刻处理单词”我”,第2个时刻处理单词”爱”,依次类推。

从图上可以看出,RNN在每个时刻$t$均会接收两个输入,一个是当前时刻的单词$Xt$,一个是来自上一个时刻的输出$h{t-1}$ ,经过计算后产生当前时刻的输出$h_t$。例如在第2个时刻,它的输入是”爱”和$ℎ_1$,它的输出是$h_2$;在第3个时刻,它的输入是”人工”和$h_2$, 输出是$h_3$,依次类推,直到处理完最后一个单词。

总结一下,RNN会从左到右逐词阅读这个句子,并不断调用一个相同的RNN Cell来处理时序信息,每阅读一个单词,RNN首先将本时刻$t$的单词$Xt$和这个模型内部记忆的状态向量$h{t-1}$融合起来,形成一个带有最新记忆的状态向量 $h_t$。

  • Tip:当RNN读完最后一个单词后,那RNN就已经读完了整个句子,一般可认为最后一个单词输出的状态向量能够表示整个句子的语义信息,即它是整个句子的语义向量,这是一个常用的想法。

Code

  • 数据准备
import torch
import torch.nn as nn
import numpy as np

torch.manual_seed(0)  # 设置随机种子以实现可重复性

seq_length = 5
input_size = 1
hidden_size = 10
output_size = 1
batch_size = 1

time_steps = np.linspace(0, np.pi, 100)
data = np.sin(time_steps)
data.resize((len(time_steps), 1))

# Split data into sequences of length 5
x = []
y = []
for i in range(len(data)-seq_length):
    _x = data[i:i+seq_length]
    _y = data[i+seq_length]
    x.append(_x)
    y.append(_y)

x = np.array(x)
y = np.array(y)
  • Model
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.rnn = nn.RNN(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x, hidden):
        out, hidden = self.rnn(x, hidden)
        out = out.view(-1, self.hidden_size)
        out = self.fc(out)
        return out, hidden
  • Train
model = RNN(input_size, hidden_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

for epoch in range(100):
    total_loss = 0
    hidden = None
    for i in range(len(x)):
        optimizer.zero_grad()
        input_ = torch.Tensor(x[i]).unsqueeze(0)
        target = torch.Tensor(y[i])
        output, hidden = model(input_, hidden)
        hidden = hidden.detach()
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        total_loss += loss.item()

    if epoch % 10 == 0:
        print(f'Epoch {epoch}, Loss: {total_loss}')

缺点

  • 当阅读很长的序列时,网络内部的信息会逐渐变得越来越复杂,以至于超过网络的记忆能力,使得最终的输出信息变得混乱无用。

参考

  1. https://zhuanlan.zhihu.com/p/30844905
  2. https://paddlepedia.readthedocs.io/en/latest/tutorials/sequence_model/rnn.html
  3. https://saturncloud.io/blog/building-rnn-from-scratch-in-pytorch/
  4. https://pytorch.org/docs/stable/generated/torch.nn.RNN.html
相关文章
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
1月前
|
机器学习/深度学习 自然语言处理 算法
【NPL自然语言处理】带你迅速了解传统RNN模型
【NPL自然语言处理】带你迅速了解传统RNN模型
|
1月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
7.1 NLP经典神经网络 RNN LSTM
该文章介绍了自然语言处理中的情感分析任务,探讨了如何使用深度神经网络,特别是循环神经网络(RNN)和长短时记忆网络(LSTM),来处理和分析文本数据中的复杂情感倾向。
|
6月前
|
机器学习/深度学习 存储 自然语言处理
NLP中的RNN、Seq2Seq与attention注意力机制(下)
NLP中的RNN、Seq2Seq与attention注意力机制(下)
62 1
|
6月前
|
机器学习/深度学习 存储 自然语言处理
NLP中的RNN、Seq2Seq与attention注意力机制(上)
NLP中的RNN、Seq2Seq与attention注意力机制
66 1
|
6月前
|
机器学习/深度学习 自然语言处理 机器人
【Tensorflow+自然语言处理+RNN】实现中文译英文的智能聊天机器人实战(附源码和数据集 超详细)
【Tensorflow+自然语言处理+RNN】实现中文译英文的智能聊天机器人实战(附源码和数据集 超详细)
90 1
|
机器学习/深度学习 存储 自然语言处理
图解NLP模型发展:从RNN到Transformer
本文以NLP模型发展为脉络,详细地解释了RNN、LSTM、GRU、seq2seq、注意力机制和Transformer。每一个技术都给出了清晰的图形化解释,便于大家理解。其中重点解释了Transformer的各个部分,因为Transformer 作为一个重要的里程碑,影响并创建了许多先进的 NLP 模型,如 GPT-3、BERT 等。
1791 1
图解NLP模型发展:从RNN到Transformer
|
机器学习/深度学习 自然语言处理
NLP学习笔记(一) RNN基本介绍
NLP学习笔记(一) RNN基本介绍
873 0
|
机器学习/深度学习 人工智能 自然语言处理
斯坦福NLP课程 | 第7讲 - 梯度消失问题与RNN变种
NLP课程第7讲介绍RNNs的梯度消失问题、两种新类型RNN(LSTM和GRU),以及其他梯度消失(爆炸)的解决方案——Gradient clipping、Skip connections等。
1177 1
斯坦福NLP课程 | 第7讲 - 梯度消失问题与RNN变种