R语言自然语言处理NLP:情感分析上市公司文本信息知识发现可视化

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: R语言自然语言处理NLP:情感分析上市公司文本信息知识发现可视化

比较简单的情感分析,能够辨别文本内容是积极的还是消极的(褒义/贬义);比较复杂的情感分析,能够知道这些文字是否流露出恐惧、生气、狂喜等细致入微的情感。此外,情感的二元特性还可以表达为是否含有较大的感情波动。也就是说,狂喜和暴怒都属于感情波动,而宠辱不惊则属于稳定的情感状态。


研究目的


本文基于R语言的自然语言处理技术,针对企业的财务信息、产品质量等文本信息,帮助客户对企业和产品进行情感分析和情感分类,并将这些数据可视化呈现。本文选择了A股上市公司相关数据,通过构建R语言的文本情感分析模型对文本情感进行分析,并以此为基础对企业进行情感分类。  附件说明:其中基础词典是要通过文本挖掘的结果扩展的词典了,也是研究的主要目的(分词的时候可以用到);


点击标题查阅往期内容


主题挖掘LDA和情感分析图书馆话题知乎用户问答行为数据


01

02

03

04


语料库资源是要进行文本挖掘的数据源。

研究的目的就是在文本分析结果的基础上扩展用户词典,这些需要在文本挖掘的基础上进行扩展。其中语料库一共是10个文件,需要的是一个文件出一个结果。最后是要对比这10个文件的。还有就是语料库是pdf格式。

出现的结果应该是类似这种的:

 

中文财务关键词 05年 06年 07年 08年
负面词 184 107

正面词 48 66

不确定词 22 19

诉权词 57 31

读取词库数据


Litigious=read.table("Litigious Words.txt")  
Strong=read.table("Modal Words Strong.txt")  
Weak=read.table("Modal Words Weak .txt")  
Positive=read.table("Positive Words.txt")  
Uncertainty=read.table("Uncertainty Words.txt")  
Negative=read.table("Negative Words .txt")

文本清理和分词

qrxdata=gsub("\n","",qrxdata)  
words= lapply(X=qrxdata, FUN=segmentCN) ;

初始化统计结果

x=words  
pwords=positive  
nwords=negative  
Litigious=Litigious  
Strong=Strong  
Weak=Weak  
Uncertainty=Uncertainty  
  
  
npwords=0  
nnwords=0  
nLitigious=0  
nStrong=0  
nWeak=0  
nUncertainty=0
emotionType <-numeric(0)  
xLen <-length(x)  
emotionType[1:xLen]<- 0  
index <- 1


词法分析


词法分析。它的原理非常简单,事前需要定义一个情感词典。比如“喜欢”这个词我们定义为1分。那么“我喜欢你”这句话,“我”和“你”都是中性词,均为0分,“喜欢”为1分,这句话的总分就是1分。“我喜欢你,但讨厌他”,这样一句话中有“讨厌”这个词,在情感词典中分数为“-1”,那么整句话的得分就是0。这样,我们就可以对每一个文本进行分词,然后使用内连接(inner join)来提取其中的情感词语,并根据情感词语的得分,来评估这段文本的情感得分。

for(index in 1: xLen){  
  x[[index]]=unique(x[[index]])  
  yLen <-length(x[[index]])  
  index2 <- 1  
  for(index2 in 1 :yLen){  
    if(length(pwords[pwords==x[[index]][index2]]) >= 1){  
      i=pwords[pwords==x[[index]][index2]]  
      npwords=npwords+length(pwords[pwords==x[[index]][index2]])  
      if(length(i)==0)next;  
      duanluo=substr(qrxdata[index],regexpr(i,qrxdata[index])[1]-20,regexpr(i,qrxdata[index])[1]+20)  
      if(regexpr(i,duanluo)[1]<0 )next;  
      cat(studentID,"\t",i," \t","DOC",index,"\t ","pos"," \t",duanluo," \t",length(pwords[pwords==x[[index]][index2]])/length(x[[index]])," \

按年份和词性分类汇总成表格

1=data.frame("正面词"=npwords,"负面词"=nnwords,"不确定词"=nUncertainty,"诉权词"=nLitigious,  
                "强语气词"=nStrong,"弱语气词"=nWeak)  
  
 =rbind(,1)


ggplot可视化


将每个文档的词性输出,并按照词性和年份绘制变化趋势:

相关文章
|
8天前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python实现深度学习模型:文本生成与自然语言处理
【7月更文挑战第14天】 使用Python实现深度学习模型:文本生成与自然语言处理
36 12
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是人工智能和语言学的一个交叉领域,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
自然语言处理(NLP)是人工智能和语言学的一个交叉领域,它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。
|
9天前
|
自然语言处理 PyTorch API
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
|
26天前
|
机器学习/深度学习 数据采集 人工智能
Python 高级实战:基于自然语言处理的情感分析系统
**摘要:** 本文介绍了基于Python的情感分析系统,涵盖了从数据准备到模型构建的全过程。首先,讲解了如何安装Python及必需的NLP库,如nltk、sklearn、pandas和matplotlib。接着,通过抓取IMDb电影评论数据并进行预处理,构建情感分析模型。文中使用了VADER库进行基本的情感分类,并展示了如何使用`LogisticRegression`构建机器学习模型以提高分析精度。最后,提到了如何将模型部署为实时Web服务。本文旨在帮助读者提升在NLP和情感分析领域的实践技能。
37 0
|
1月前
|
自然语言处理 算法 JavaScript
【自然语言处理NLP】社区发现快速入门(2)
【自然语言处理NLP】社区发现快速入门
58 0
【自然语言处理NLP】社区发现快速入门(2)
|
1月前
|
机器学习/深度学习 编解码 自然语言处理
【自然语言处理NLP】社区发现快速入门(1)
【自然语言处理NLP】社区发现快速入门
103 2
|
1月前
|
自然语言处理
【自然语言处理NLP】DPCNN模型论文精读笔记
【自然语言处理NLP】DPCNN模型论文精读笔记
43 2
|
1月前
|
机器学习/深度学习 自然语言处理 PyTorch
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
44 0
|
1月前
|
自然语言处理 数据挖掘
【自然语言处理NLP】Bert中的特殊词元表示
【自然语言处理NLP】Bert中的特殊词元表示
23 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解、处理和生成人类语言。
自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解、处理和生成人类语言。