概述
mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle;
shuffle: 洗牌、发牌——(核心机制:数据分区,排序,缓存);
具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序;
主要流程
Shuffle缓存流程:
shuffle是MR处理流程中的一个过程,它的每一个处理步骤是分散在各个map task和reduce task节点上完成的,整体来看,分为3个操作:
1、分区partition
2、Sort根据key排序
3、Combiner进行局部value的合并
详细流程
1、maptask收集我们的map()方法输出的kv对,放到内存缓冲区中。
2、从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件。
3、多个溢出文件会被合并成大的溢出文件。
4、在溢出过程中,及合并的过程中,都要调用partitoner进行分组和针对key进行排序。
5、reducetask根据自己的分区号,去各个maptask机器上取相应的结果分区数据。
6、reducetask会取到同一个分区的来自不同maptask的结果文件,reducetask会将这些文件再进行合并(归并排序)。
7、合并成大文件后,shuffle的过程也就结束了,后面进入reducetask的逻辑运算过程(从文件中取出一个一个的键值对group,调用用户自定义的reduce()方法)。
Shuffle中的缓冲区大小会影响到mapreduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快 。
缓冲区的大小可以通过参数调整, 参数:io.sort.mb 默认100M。
详细流程示意图