使用Panda-Gym的机器臂模拟进行Deep Q-learning强化学习

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 强化学习(RL)是一种机器学习方法,它允许代理通过试错来学习如何在环境中表现。行为主体因采取行动导致预期结果而获得奖励,因采取行动导致预期结果而受到惩罚。随着时间的推移,代理学会采取行动,使其预期回报最大化。

RL代理通常使用马尔可夫决策过程(MDP)进行训练,马尔可夫决策过程是为顺序决策问题建模的数学框架。MDP由四个部分组成:

状态:环境的可能状态的集合。

动作:代理可以采取的一组动作。

转换函数:在给定当前状态和动作的情况下,预测转换到新状态的概率的函数。

奖励函数:为每次转换分配奖励给代理的函数。

代理的目标是学习策略函数,将状态映射到动作。通过策略函数来最大化代理随着时间的预期回报。

Deep Q-learning是一种使用深度神经网络学习策略函数的强化学习算法。深度神经网络将当前状态作为输入,并输出一个值向量,每个值代表一个可能的动作。然后代理采取具有最高值的操作。

Deep Q-learning是一种基于值的强化学习算法,这意味着它学习每个状态-动作对的值。状态-动作对的值是agent在该状态下采取该动作所获得的预期奖励。

Actor-Critic是一种结合了基于值和基于策略的RL算法。有两个组成部分:

Actor:参与者负责选择操作。

Critic:负责评价Actor的行为。

Actor和Critic同时接受训练。Actor被训练去最大化预期奖励,Critic被训练去准确地预测每个状态-动作对的预期奖励。

Actor-Critic算法与其他RL算法相比有几个优点。首先它更稳定,这意味着在训练过程中不太可能出现偏差。其次它更有效率,这意味着它可以更快地学习。第三它更具可扩展性,这意味着它可以应用于具有大型状态和操作空间的问题。

下面的表格总结了Deep Q-learning和Actor-Critic之间的主要区别:

Actor-Critic (A2C)的优势

Actor-Critic是一种流行的强化学习架构,它结合了基于策略和基于价值的方法。它有几个优点,使其成为解决各种强化学习任务的强大选择:

1、低方差

与传统的策略梯度方法相比,A2C 在训练期间通常具有更低的方差。这是因为 A2C 同时使用了策略梯度和值函数,通过值函数来减小梯度的方差。低方差意味着训练过程更加稳定,能够更快地收敛到较好的策略。

2、更快的学习速度

由于低方差的特性,A2C 通常能够以更快的速度学习到一个良好的策略。这对于那些需要进行大量模拟的任务来说尤为重要,因为较快的学习速度可以节省宝贵的时间和计算资源。

3、结合策略和值函数

A2C 的一个显著特点是它同时学习策略和值函数。这种结合使得代理能够更好地理解环境和动作的关联,从而更好地指导策略改进。值函数的存在还有助于减小策略优化中的误差,提高训练的效率。

4、支持连续和离散动作空间

A2C 可以轻松适应不同类型的动作空间,包括连续和离散动作。这种通用性使得 A2C 成为一个广泛适用的强化学习算法,可以应用于各种任务,从机器人控制到游戏玩法优化。

5、并行训练

A2C 可以轻松地并行化,充分利用多核处理器和分布式计算资源。这意味着可以在更短的时间内收集更多的经验数据,从而提高训练效率。

虽然Actor-Critic方法提供了一些优势,但它们也有自己的挑战,例如超参数调优和训练中的潜在不稳定性。但是通过适当的调整和经验回放和目标网络等技术,这些挑战可以在很大程度上得到缓解,使Actor-Critic成为强化学习中有价值的方法。

panda-gym

panda-gym 基于 PyBullet 引擎开发,围绕 panda 机械臂封装了 reach、push、slide、pick&place、stack、flip 等 6 个任务,主要也是受 OpenAI Fetch 启发。

我们下面的代码将使用panda-gym作为示例

1、安装库

代码首先初始化强化学习环境:

 !apt-get install -y \
     libgl1-mesa-dev \
     libgl1-mesa-glx \
     libglew-dev \
     xvfb \
     libosmesa6-dev \
     software-properties-common \
     patchelf

 !pip install \
     free-mujoco-py \
     pytorch-lightning \
     optuna \
     pyvirtualdisplay \
     PyOpenGL \
     PyOpenGL-accelerate\
     stable-baselines3[extra] \
     gymnasium \
     huggingface_sb3 \
     huggingface_hub \ 
     panda_gym

2、导入库

 import os

 import gymnasium as gym
 import panda_gym

 from huggingface_sb3 import load_from_hub, package_to_hub

 from stable_baselines3 import A2C
 from stable_baselines3.common.evaluation import evaluate_policy
 from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
 from stable_baselines3.common.env_util import make_vec_env

3、创建运行环境

 env_id = "PandaReachDense-v3"

 # Create the env
 env = gym.make(env_id)

 # Get the state space and action space
 s_size = env.observation_space.shape
 a_size = env.action_space

 print("\n _____ACTION SPACE_____ \n")
 print("The Action Space is: ", a_size)
 print("Action Space Sample", env.action_space.sample()) # Take a random action

4、观察和奖励的规范化

强化学习优化的一个好方法是对输入特征进行归一化。我们通过包装器计算输入特征的运行平均值和标准偏差。同时还通过添加norm_reward = True来规范化奖励

 env = make_vec_env(env_id, n_envs=4)

 env = VecNormalize(env, norm_obs=True, norm_reward=True, clip_obs=10.)

5、创建A2C模型

我们使用Stable-Baselines3团队训练过的官方代理

 model = A2C(policy = "MultiInputPolicy",
             env = env,
             verbose=1)

6、训练A2C

 model.learn(1_000_000)

 # Save the model and  VecNormalize statistics when saving the agent
 model.save("a2c-PandaReachDense-v3")
 env.save("vec_normalize.pkl")

7、评估代理

 from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize

 # Load the saved statistics
 eval_env = DummyVecEnv([lambda: gym.make("PandaReachDense-v3")])
 eval_env = VecNormalize.load("vec_normalize.pkl", eval_env)

 # We need to override the render_mode
 eval_env.render_mode = "rgb_array"

 #  do not update them at test time
 eval_env.training = False
 # reward normalization is not needed at test time
 eval_env.norm_reward = False

 # Load the agent
 model = A2C.load("a2c-PandaReachDense-v3")

 mean_reward, std_reward = evaluate_policy(model, eval_env)

 print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")

最后我们看看训练的可视化

总结

在“panda-gym”将Panda机械臂和GYM环境有效的结合使得我们可以轻松的在本地进行机械臂的强化学习,

Actor-Critic架构中代理会学会在每个时间步骤中进行渐进式改进,这与稀疏的奖励函数形成对比(在稀疏的奖励函数中结果是二元的),这使得Actor-Critic方法特别适合于此类任务。

通过将策略学习和值估计无缝结合,代理能够熟练地操纵机械臂末端执行器到达指定的目标位置。这不仅为机器人控制等任务提供了实用的解决方案,而且还具有改变各种需要敏捷和明智决策的领域的潜力。

https://avoid.overfit.cn/post/525038afba49436b85aa5abe627890a5

作者:Ankush k Singal

目录
相关文章
|
6月前
|
机器学习/深度学习 数据采集 算法
Machine Learning机器学习之随机森林(Random Forests)
Machine Learning机器学习之随机森林(Random Forests)
|
6月前
|
机器学习/深度学习 存储 算法
探索Python中的强化学习:SARSA
探索Python中的强化学习:SARSA
104 4
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
1月前
|
机器学习/深度学习 算法框架/工具 Python
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
62 0
|
6月前
|
机器学习/深度学习 存储 算法
探索Python中的强化学习:Q-learning
探索Python中的强化学习:Q-learning
114 7
探索Python中的强化学习:Q-learning
|
机器学习/深度学习 算法 数据可视化
基于Gym Anytrading 的强化学习简单实例
近年来强化学习(RL)在算法交易领域受到了极大的关注。强化学习算法从经验中学习并基于奖励优化行动使其非常适合交易机器人。在这篇文章,我们将简单介绍如何使用Gym Anytrading环境和GME (GameStop Corp.)交易数据集构建一个基于强化学习的交易机器人。
114 0
|
6月前
|
机器学习/深度学习 算法 PyTorch
探索Python中的强化学习:DQN
探索Python中的强化学习:DQN
125 0
|
机器学习/深度学习 数据可视化 大数据
深度学习实践篇 第七章:transfer learning for computer vision
简要介绍如何使用预训练好的模型做训练。
|
机器学习/深度学习 自然语言处理 监控
Lecture 1:强化学习简介
Lecture 1:强化学习简介
|
机器学习/深度学习 搜索推荐 TensorFlow
【推荐系统】TensorFlow复现论文Wide&Deep网络结构
【推荐系统】TensorFlow复现论文Wide&Deep网络结构
226 0
【推荐系统】TensorFlow复现论文Wide&Deep网络结构