阿里云大数据ACA及ACP复习题(511~520)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,因为是纯手工整理解析所以可能出现答案打错的情况,题库是能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试(自己整理解析也需要时间,可能有更新不及时的情况哈)

511.关于数据分析的步骤,以下( D )是在进行数据分析时首先要做的事情。
A:数据收集
B:数据处理
C:数据展现
D:明确目的

解析:数据分析流程首先确定目的,按照选项的顺序应该是明确目的、数据收集、数据处理、数据展现

512.以下图表中,适合展现层次关系的图表有哪些?( A C )(正确2个)
A:树图
B:来源去向
C:矩阵树图
D:气泡地图
E:仪表盘

解析:树图是一种利用包含关系表达层次化数据的可视化方法。 矩形树图适合展现具有层级关系的数据,能够直观体现同级之间的比较。

513.以下图表中,和业务流程相关的有哪些?( AB )(正确2个)
A:来源去向
B:漏斗图
C:条形图
D:散点图
E:树图

解析:来源去向图可以展示一组数据的来源、过程、去向和占比情况,进而体现业务各个环节的数据表现 漏斗图适用于业务流程比较规范、周期长、环节多的单流程单向分析,通过漏斗各环节业务数据的比较能够直观地发现和说明问题所在的环节,进而做出决策

514.DataWorks 数据同步支持的数据类型有( AB )。
A:结构化数据
B:实时业务数据
C:非结构化数据
D:半结构化数据

解析:DataWorks同步过程支持的数据: 仅支持结构化的数据; 支持单地域内及部分跨地域的相互同步、交换 完成数据同步,数据同步都是将业务系统中产生的业务数据定期导入到工作区,通过工作流任务的加工处理后,再将计算结果定期导入到指定的数据源中,供进一步展示或者使用。

515.Hive的SQL执行流程中,步骤Physical Plan Optimizer有什么作用?( B )
A:将逻辑查询计划转成物理计划
B:选择最佳的优化查询策略
C:将SQL转换成抽象语法树
D:将查询块转换成逻辑查询计划

解析:物理计划优化器:选择最佳的join策略(physical optimizer)

516.Spark最早是源于加州大学伯克利分校的Matei Zaharia等人发表的一篇论文。论文提出了一种( C )的概念。
A:分布式并行计算
B:分布式文件系统
C:分布式弹性数据集(RDD)
D:分布式微服务

解析:Spark 最早源于一篇论文 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, 该论文是由加州大学柏克莱分校的 Matei Zaharia 等人发表的。论文中提出了一种弹性分布式数据集(即 RDD)的概念。

517.下面属于查询分析计算技术的是?( C )
A:Spark
B:Storm
C:Hive
D:Pregel

解析:查询分析计算技术:Hive、Impala

518.关于云计算在许多领域有诸多应用,如政务、教育、各种产业、医疗等有明显的表现,描述正确的是( AD )
A:政务云,部署公共安全管理、容灾备份、城市管理、应急管理、智能交通、社会保障等应用,通过集约化建设、管理和运行,可以实现信息资源整合和政务资源共享,推动政务管理创新,加快向服务型政府转型
B:医疗云,实现远程医疗,电子病历,专家会诊等
C:企业以低廉的成本建立财务、供应链、客户关系等管理应用系统,大大降低企业信息化门槛,加速提升企业信息化水平,对企业市场竞争力没有明显增加
D:教育云,整合教育资源,实现教育资源共享

解析:医疗云可以推动医院与医院、医院与社区、医院与急救中心、医院与家庭之间的服务共享,并形成一套全新的医疗健康服务系统,从而有效地提高医疗保健的质量。

519.某数据集包含以下项(时间,区域,销售金额),想通过一张图表把上述信息全部展示出来,适合使用( A )。
A:气泡图
B:树图
C:饼图
D:雷达图

解析:根据题意,数据集有三个变量。气泡图是可用于展示三个变量之间的关系;树图适合展示层次结构,不是展示数量关系;饼图适合展示各部分占比情况,不适合展示形象之间的数量关系;雷达图适合展示3个以上数字类型的指标,主要展示综合分布情况,而题中“地区”不是数量指标

520.QuickBI中的是通过菜单形式组织的仪表板的集合,可以制作复杂的带导航菜单的专题类分析。( B )
A:仪表板
B:数据门户
C:IFrame
D:工作表

解析:数据门户也叫数据产品,可以通过菜单形式将仪表板组织成复杂的带导航菜单,常用于专题类分析。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
240 0
|
4月前
|
数据采集 人工智能 大数据
10倍处理效率提升!阿里云大数据AI平台发布智能驾驶数据预处理解决方案
阿里云大数据AI平台推出智能驾驶数据预处理解决方案,助力车企构建高效稳定的数据处理流程。相比自建方案,数据包处理效率提升10倍以上,推理任务提速超1倍,产能翻番,显著提高自动驾驶模型产出效率。该方案已服务80%以上中国车企,支持多模态数据处理与百万级任务调度,全面赋能智驾技术落地。
496 0
|
2月前
|
人工智能 分布式计算 DataWorks
阿里云大数据AI产品月刊-2025年8月
阿里云大数据& AI 产品技术月刊【2025年 8 月】,涵盖 8 月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
301 1
|
2月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
283 1
|
存储 机器学习/深度学习 人工智能
阿里云ODPS:在AI浪潮之巅,铸就下一代智能数据根基
在智能爆炸时代,ODPS正从传统数据平台进化为“AI操作系统”。面对千亿参数模型与实时决策挑战,ODPS通过流批一体架构、多模态处理、智能资源调度等技术创新,大幅提升效率与智能化水平。从自动驾驶到医疗联合建模,从数字孪生到低代码AI开发,ODPS正重塑企业数据生产力,助力全球客户在算力洪流中抢占先机。
183 0
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
193 14
|
4月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
169 4
|
3月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
160 0