深处数据时代:大数据的这些误区你躺枪了哪个

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据,说的再多其实也还是会有很多网友对当前的大数据技术存在一些疑问和误区,比如有很多朋友会觉得只有到达Peta级别以上的才能够被称之为大数据,甚至是到达了Zeta级别才算是。

其实不然,大数据的本身是数据,对于我们这些用户来说,如何从数据当中挖掘出有用的价值,这种价值可能包含了商业价值、技术开发价值等等,那么这样的大数据才是有意义的。而作为数据本身来说,从诞生那天开始其实数据量就一直在不断地攀升。

回过头来,究竟什么才是大数据,从官方的字面意义来分析,大数据其实就是一套完整的生态体系,从数据的产生、采集、加工、汇总、展现、挖掘、推送等方面形成了一个闭环的价值链,并且通过每个环节的多种技术处理后,为所在业务场景提供有价值的应用和服务。

不要为了“大数据”而“大数据”

这个误区的解读是近些年在行业内被提及的越来越多的观点,在很多企业级用户当中,追求技术的革新是再正常不过的,但是很多企业在技术创新过程当中却盲目的一味追求最新、最好、最快,而没有把问题的出发点放在企业内部的业务实际需求上面,从长远来看,这其实也并不是一个良性循环。

从技术上来说,比如BAT或者很多互联网企业去追求大数据,是因为业务发展的需要。任何一个互联网企业一出生就是为了流量和点击而活着,这就意味这大量的非结构化数据需要进行快速处理,这时候就决定了互联网企业只能通过一些并发手段去分解底层的数据。

从投资上来说,互联网企业出生都是平民,根本买不起大型设备,就算一夜暴富后,也没有一个传统的小型机大型机可以更好的满足它们的发展,故只能另辟蹊径创造价值链和标准了,在之前的低投资、轻量级架构上,不断进行小量的线性硬件投资满足业务的发展。

数据:水能载舟亦能覆舟

这个观点也是行业专家一直在强调的问题,大数据技术是为了满足用户的一些特定的业务目标来服务的,在企业用户明确了具体的业务目标范畴之后,顺势设计符合自身业务架构的技术架构,才是一种科学的健康的发展观。

随着大数据的不断创新和发展,在促进生产力快速推进的同时,也促使了一些新的技术诞生出来,比如近些年被更多提及的机器学习、深度学习等等,其实就是大数据快速发展而导致的。更有意思的是,现在在行业内还被提出了“小数据”、“微数据”的概念,这其实就是在把数据的价值往更详细的方向去演进,一切其实都是为了企业业务能够拥有一个更加良性的生长环境,而这也正是当今这个数据时代为用户所带来的最为重要的改变。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
323 7
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
49 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
89 1
|
27天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
66 4
|
1月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
24 4
|
1月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
58 3
|
1月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
68 2
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
114 2
|
1月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
111 2
|
1月前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。