采用医疗AI、自然语言处理技术的智能导诊系统源码

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 随着人工智能技术的快速发展,语音识别与自然语言理解技术的成熟应用,基于人工智能的智能导诊导医逐渐出现在患者的生活视角中,智能导诊系统应用到医院就医场景中,为患者提供导诊、信息查询等服务,符合智慧医院建设的需求,增加患者服务渠道,改善患者就医体验。智能导诊导医系统技术架构:springboot+redis+mybatis plus+mysql+RocketM

一套java智能导诊导医系统源码
随着人工智能技术的快速发展,语音识别与自然语言理解技术的成熟应用,基于人工智能的智能导诊导医逐渐出现在患者的生活视角中,智能导诊系统应用到医院就医场景中,为患者提供导诊、信息查询等服务,符合智慧医院建设的需求,增加患者服务渠道,改善患者就医体验。

智能导诊导医系统技术架构:springboot+redis+mybatis plus+mysql+RocketMQ

在系统的引导下,患者通过自述症状、发病时长、诱因病因和既往诊治过程等信息,自动为患者精准推荐就诊科室。通过人工智能辅助诊断技术提供辅助诊断结果并生成自查报告,推荐疾病百科知识等。

26.png

系统特点:
支持以公众号、小程序、App 等形式接入智能导诊;
支持以3D人体部位图的形式选择身体不适位置及点选该部位的症状;
采用医疗AI、自然语言处理技术,对患者主诉进行语义分析,智能匹配医学知识库;
采用AI聊天机器人的交互方式,多轮问询即出结果;
能够基于AI引擎,针对于患者描述的病情及伴随症状,同时结合患者的性别年龄特征,准确推荐医院科室。

5(拼图).png

智慧医院如何实现智能导诊服务?
1、数据收集和整合:医院需要收集和整合患者的医疗数据,包括病历、化验结果、影像资料等。同时,还可以整合相关的医学数据库和知识库,以便为导诊提供支持。

2、患者信息采集:在患者来院时,可以通过智能问诊系统收集患者的基本信息、症状描述、病史等。这可以通过语音识别、自然语言处理技术实现。

3、智能分析与诊断:利用人工智能技术,对患者提供的信息进行分析和诊断。可以采用机器学习、深度学习等技术来训练模型,帮助系统自动辨别病症,并提供初步的导诊建议。

4、智能导诊与推荐:根据智能分析的结果,系统可以给出针对性的导诊建议,包括推荐相关的专科医生、医学检查、治疗方案等。这些建议可以通过移动应用、电子病历系统等形式呈现给医生和患者。

5、医生辅助工具:智能导诊系统可以作为医生的辅助工具,帮助医生更快速地获取患者的病情信息,并提供参考意见。但最终的诊断和治疗决策仍由医生来负责。

6、持续优化:智能导诊系统应不断优化和升级,通过不断积累新的医疗数据和经验,提高系统的准确性和智能化水平。

7、隐私与安全保障:在实现智能导诊服务的过程中,要严格遵守患者的隐私保护要求,确保患者的个人信息得到安全保障。

相关文章
|
15天前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
71 4
|
12天前
|
设计模式 人工智能 API
​​混合检索技术:如何提升AI智能体50%的响应效率?​
本文深入解析检索增强智能体技术,探讨其三大集成模式(工具模式、预检索模式与混合模式),结合实战代码讲解RAG组件链构建、上下文压缩、混合检索等关键技术,并提供多步检索工作流与知识库自更新机制设计,助力高效智能体系统开发。
84 0
|
2月前
|
存储 关系型数据库 数据库
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
本文通过一个 Agentic RAG 应用的完整构建流程,展示了如何借助 RDS Supabase 快速搭建具备知识处理与智能决策能力的 AI 应用,展示从数据准备到应用部署的全流程,相较于传统开发模式效率大幅提升。
附部署代码|云数据库RDS 全托管 Supabase服务:小白轻松搞定开发AI应用
|
人工智能 缓存 NoSQL
【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
97 0
|
2月前
|
人工智能 监控 数据可视化
BISHENG下一代企业AI应用的“全能型“LLM软件
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
14天前
|
人工智能 开发者
OpenVINO™ DevCon中国系列工作坊:AI模型优化与端侧应用落地
解锁AI高效部署新路径,共赴智能创新璀璨未来
55 1

热门文章

最新文章