算法分析与设计——递归算法(二)1.汉罗塔问题

简介: 算法分析与设计——递归算法(二)1.汉罗塔问题

常见递归问题

  1. 汉罗塔问题
    汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子(A,B,C),在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
    规则:1、每次只能移动一个盘子
    2、大盘子不能放在小盘子上面
    问题:有n层黄金圆盘时 如何用递归演绎?并且需要多少次移动才能将其从A到C盘?
    分析:
    1.当n=1时,从A到C只需要 1 次移动
    2.当n=2时,先将小的移动到B底层移动到C,在将小的从B移动到C,总共需要 3 次
    3.当n=3时,同理,现将最上层移动到C,中间层移动到B,在C的最上层 移动到B,然后将A的底层移动到C 最后转化为最上层和中间层 从B移动到C,结束时就正好移动完,
    此时发现在n=3中,总体思路是 将上两层移动通过借助C移动到B,然后将A的底层移动到C,再将B中的二层通过A移动到C,此时二层的移动了两次。
    类比4,5,6一样的 都是前n-1层移动了两次,再移动一次底层
    转换为递归模型:
    1.涉及问题的规模 ,此处为黄金盘层数n
    2.当规模发生变化时,解决问题方法不变,都是将上n-1层移动通过借助C移动到B,然后将第n层移动到C,再将B中的n-1层通过A移动到C,此时n-1层总共的移动了两次
    大规模问题可以转换为小规模问题,n层的黄金盘 可以转换为n-1层的黄金盘移动两个和移动第n层
    3.小规模问题有解:当n=1时 只需要移动1次
    归纳:1、当n=1时,A柱子只有一个盘子,可以直接移到C上去
    2、当n>=2时,将A柱子上n-1个盘子借助C柱子移到B上,将A最后一个盘子移到C上,最后将B柱子借助空A柱子移到C上。
    代码:
void Hanoi(int n, char a, char b, char c)//a为原始柱,b为借助柱,c为目标柱
{
        if (n == 1)
        {
            Move(a, c);//只有一个盘子时直接移
        }
        else
        {
            Hanoi(n - 1, a, c, b);//将A柱子上n-1个盘子借助C柱子移到B上
            Move(a, c);//将A最后一个盘子移到C上
            Hanoi(n - 1, b, a, c);//将B柱子借助空A柱子移到C上
        }
}
void Move(char orin, char target)
{
    cout << orin << "->" << target << endl;
}

算法分析:

设盘子个数为n时,需要T(n)步,把A柱子n-1个盘子移到B柱子,需要T(n-1)步,A柱子最后一个盘子移到C柱子一步,B柱子上n-1个盘子移到C柱子上T(n-1)步。

得递推公式T(n)=2T(n-1)+1

所以汉诺塔问题的时间复杂度为O(2^n);

借鉴于此

相关文章
|
11月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
313 3
|
3月前
|
机器学习/深度学习 边缘计算 算法
NOMA和OFDMA优化算法分析
NOMA和OFDMA优化算法分析
232 127
|
5月前
|
数据采集 机器学习/深度学习 算法
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
别急着上算法,咱先把数据整明白:大数据分析的5个基本步骤,你都搞对了吗?
209 4
|
2月前
|
人工智能 自然语言处理 算法
2025 年 7 月境内深度合成服务算法备案情况分析报告
2025年7月,中央网信办发布第十二批深度合成算法备案信息,全国389款产品通过备案,服务提供者占比超七成。截至7月14日,全国累计备案达3834款,覆盖文本、图像、音视频等多模态场景,广泛应用于生活服务、医疗、金融等领域。广东以135款居首,数字人、AI客服等C端应用主导,民营企业成主力,国企聚焦公共服务。随着AI政策推动,备案已成为AI产品合规上线关键环节。
|
5月前
|
存储 监控 算法
员工行为监控软件中的 Go 语言哈希表算法:理论、实现与分析
当代企业管理体系中,员工行为监控软件已逐步成为维护企业信息安全、提升工作效能的关键工具。这类软件能够实时记录员工操作行为,为企业管理者提供数据驱动的决策依据。其核心支撑技术在于数据结构与算法的精妙运用。本文聚焦于 Go 语言中的哈希表算法,深入探究其在员工行为监控软件中的应用逻辑与实现机制。
144 14
|
6月前
|
自然语言处理 算法 安全
境内深度合成服务算法备案通过名单分析报告
本报告基于《境内深度合成服务算法备案通过名单》,分析了2023年6月至2025年3月公布的10批备案数据,涵盖属地分布、行业应用及产品形式等多个维度。报告显示,深度合成算法主要集中于经济发达地区,如北京、广东、上海等地,涉及教育、医疗、金融、娱乐等多行业。未来趋势显示技术将向多模态融合、行业定制化和安全合规方向发展。建议企业加强技术研发、拓展应用场景、关注政策动态,以在深度合成领域抢占先机。此分析旨在为企业提供参考,助力把握技术发展机遇。
境内深度合成服务算法备案通过名单分析报告
|
6月前
|
供应链 算法 搜索推荐
从公布的前十一批其他算法备案通过名单分析
2025年3月12日,国家网信办发布算法备案信息,深度合成算法通过395款,其他算法45款。前10次备案中,深度合成算法累计3234款,其他类别647款。个性化推送类占比49%,涵盖电商、资讯、视频推荐;检索过滤类占31.53%,用于搜索优化和内容安全;调度决策类占9.12%,集中在物流配送等;排序精选类占8.81%,生成合成类占1.55%。应用领域包括电商、社交媒体、物流、金融、医疗等,互联网科技企业主导,技术向垂直行业渗透,内容安全和多模态技术成新增长点。未来大模型检索和多模态生成或成重点。
从公布的前十一批其他算法备案通过名单分析
|
6月前
|
人工智能 自然语言处理 供应链
从第十批算法备案通过名单中分析算法的属地占比、行业及应用情况
2025年3月12日,国家网信办公布第十批深度合成算法通过名单,共395款。主要分布在广东、北京、上海、浙江等地,占比超80%,涵盖智能对话、图像生成、文本生成等多行业。典型应用包括医疗、教育、金融等领域,如觅健医疗内容生成算法、匠邦AI智能生成合成算法等。服务角色以面向用户为主,技术趋势为多模态融合与垂直领域专业化。
|
7月前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
110 3
|
6月前
|
人工智能 自然语言处理 算法
从第九批深度合成备案通过公示名单分析算法备案属地、行业及应用领域占比
2024年12月20日,中央网信办公布第九批深度合成算法名单。分析显示,教育、智能对话、医疗健康和图像生成为核心应用领域。文本生成占比最高(57.56%),涵盖智能客服、法律咨询等;图像/视频生成次之(27.32%),应用于广告设计、影视制作等。北京、广东、浙江等地技术集中度高,多模态融合成未来重点。垂直行业如医疗、教育、金融加速引入AI,提升效率与用户体验。

热门文章

最新文章