【Python机器学习】实验01 Numpy以及可视化回顾

简介: 【Python机器学习】实验01 Numpy以及可视化回顾

一、Numpy的基础知识

  • 创建列表
import numpy as np
np.array([1,2,3])
array([1, 2, 3])
np.array([[1,2],[2,3]])
array([[1, 2],
       [2, 3]])
  • 快捷方式创建列表
np.arange(1,10),np.arange(10,1,-1)
(array([1, 2, 3, 4, 5, 6, 7, 8, 9]),
 array([10,  9,  8,  7,  6,  5,  4,  3,  2]))
range(10,1,-1)
range(10, 1, -1)
np.linspace(1,10,5)
array([ 1.  ,  3.25,  5.5 ,  7.75, 10.  ])
np.zeros((2,2))
array([[0., 0.],
       [0., 0.]])
np.ones((1,1))
array([[1.]])
np.diag([1,2])
array([[1, 0],
       [0, 2]])
  • 采用随机数生成数组
import numpy.random as rd
rd.uniform(2,3,[3,4])
array([[2.00870568, 2.84081335, 2.56773483, 2.31232497],
       [2.4091653 , 2.22513678, 2.62473312, 2.20786884],
       [2.8608431 , 2.04426497, 2.73712184, 2.73669482]])
rd.random((1,3))
array([[0.33035627, 0.1179577 , 0.68061576]])
rd.normal(2,6,(2,4))
array([[ 5.6250594 ,  8.07709039,  1.92724817, -4.75702484],
       [-1.71722434,  2.69880337, -6.20162398, -0.62033363]])
  • 利用随机数生成图片
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt
plt.figure(figsize=(2,2))
img=rd.randint(0,255,(10,10))
plt.imshow(img)
<matplotlib.image.AxesImage at 0x243604a2250>

arr1=rd.randn(1,3)
arr1.astype("float32")
array([[ 0.47883075, -0.5455359 , -1.2719026 ]], dtype=float32)
  • 数组常见属性
arr1.shape,arr1.T,arr1.dtype,arr1.ndim
((1, 3),
 array([[ 0.47883076],
        [-0.54553593],
        [-1.27190261]]),
 dtype('float64'),
 2)
  • 数组的访问
arr=np.arange(1,10).reshape(3,3)
arr
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])


plt.figure(figsize=(2,2))
plt.imshow(arr)
<matplotlib.image.AxesImage at 0x24360c1ed00>

arr[:2,:2]
array([[1, 2],
       [4, 5]])
arr[[0,2],:2]
array([[1, 2],
       [7, 8]])
arr.T
plt.figure(figsize=(2,2))
plt.imshow(arr.T)
<matplotlib.image.AxesImage at 0x24360c78af0>

arr[::-1,]
plt.figure(figsize=(2,2))
plt.imshow(arr[::-1,])
<matplotlib.image.AxesImage at 0x24360ccdd30>

arr[::-1,].T
plt.figure(figsize=(2,2))
plt.imshow(arr[::-1,].T)
<matplotlib.image.AxesImage at 0x24360d24e20>

arr.T[::-1,]
plt.figure(figsize=(2,2))
plt.imshow(arr.T[::-1,])
<matplotlib.image.AxesImage at 0x24360d78a30>

arr.T[::,::-1]
plt.figure(figsize=(2,2))
plt.imshow(arr.T[::,::-1])
<matplotlib.image.AxesImage at 0x24360dcc730>

  • 可视化2*2像素的一张图
import matplotlib.pyplot as plt
plt.figure(figsize=(2,2))
plt.imshow([[0,1],[1,0]])
<matplotlib.image.AxesImage at 0x24360e24340>

  • 数组的应用np.insert,np.concatenate,np.stack,np.tile
from scipy import misc
plt.figure(figsize=(2,2))
img = misc.face()
plt.imshow(img)
<matplotlib.image.AxesImage at 0x24360ef4be0>

img.shape
(768, 1024, 3)
plt.figure(figsize=(2,2))
plt.imshow(img[:,:512,:])
<matplotlib.image.AxesImage at 0x24361197ca0>

plt.figure(figsize=(2,2))
plt.imshow(img[:384,:,:])
<matplotlib.image.AxesImage at 0x2436131cd00>

plt.figure(figsize=(2,2))
plt.imshow(img[:,:,2])
<matplotlib.image.AxesImage at 0x2436149bcd0>

img_r=img[:,:,2]
plt.figure(figsize=(2,2))
plt.imshow(img_r[::-1,:])
<matplotlib.image.AxesImage at 0x243614f7250>

img_r=img[:,:,2]
plt.figure(figsize=(2,2))
plt.imshow(img_r[::,::-1])
<matplotlib.image.AxesImage at 0x2436154b4c0>

img_new=np.insert(img_r,0,img_r[:50],axis=0)
plt.figure(figsize=(2,2))
plt.imshow(img_new)
matplotlib.image.AxesImage at 0x2436159b790>

img_new=np.insert(img_r,0,img_r[:,:100].T,axis=1)
plt.figure(figsize=(2,2))
plt.imshow(img_new)
<matplotlib.image.AxesImage at 0x243615f0f40>

plt.figure(figsize=(2,2))
plt.imshow(np.concatenate([img_r,img_r],axis=1))
<matplotlib.image.AxesImage at 0x24362a74c10>

plt.figure(figsize=(2,2))
plt.imshow(np.concatenate([img_r,img_r],axis=0))
<matplotlib.image.AxesImage at 0x243628f9be0>

plt.figure(figsize=(2,2))
plt.imshow(np.stack([img_r,img_r],axis=0)[0])
<matplotlib.image.AxesImage at 0x2436294cdf0>

实验1 生成由随机数组成的三通道图片,分别显示每个维度图片,并将三个通道的像素四周进行填充,分别从上下左右各填充若干数据。

程序设计

#利用随机数生成图片
import numpy as np
import numpy.random as rd
import matplotlib.pyplot as plt
fig=plt.figure(figsize=(4,4))
#四张子图
ax1=fig.add_subplot(221)
ax2=fig.add_subplot(222)
ax3=fig.add_subplot(223)
ax4=fig.add_subplot(224)
#用随机数数组填充子图
img=rd.randint(0,255,(10,10))
ax1.imshow(img)
ax2.imshow(img) 
ax3.imshow(img)  
ax4.imshow(img)  
#从上方填充
img1=np.insert(img,0,img[0,:],axis=0)
ax1.imshow(img1)
#从下面填充
img2=np.insert(img,-1,img[-1,:],axis=0)
ax2.imshow(img2)
#从左边填充
img3=np.insert(img,0,img[:,0],axis=1)
ax3.imshow(img3)
#从右边填充
img4=np.insert(img,-1,img[:,-1],axis=1)
ax4.imshow(img4)
plt.tight_layout()
plt.show()

具体分析

这段代码是利用随机数生成图片,并在将图片填充到四个子图中展示。以下是代码的具体分析:

  1. 导入numpy库,用于生成随机数和操作数组;导入matplotlib库,用于绘制图像。
  2. 创建一个大小为4x4的Figure对象,即一个包含4个子图的画布。
  3. 使用add_subplot()函数创建四个子图对象ax1、ax2、ax3和ax4。
  4. 使用randint()函数生成一个10x10的随机数数组img,并将其作为参数传递给imshow()函数并分别绘制到四个子图上。
  1. 从上方填充子图1(ax1):使用insert()函数在数组img的第一行之前插入第一行,并将结果赋给img1。然后使用imshow()函数在子图1上展示img1。
  1. 从下方填充子图2(ax2):使用insert()函数在数组img的倒数第一行之前插入最后一行,并将结果赋给img2。然后使用imshow()函数在子图2上展示img2。
  2. 从左边填充子图3(ax3):使用insert()函数在数组img的第一列之前插入第一列,并将结果赋给img3。然后使用imshow()函数在子图3上展示img3。
  3. 从右边填充子图4(ax4):使用insert()函数在数组img的倒数第一列之前插入最后一列,并将结果赋给img4。然后使用imshow()函数在子图4上展示img4。
  1. 使用tight_layout()函数调整子图的布局,使其适应画布。
  2. 使用show()函数显示画布和子图。

二、Numpy的线性代数运算

import numpy.linalg as la
arr1=np.arange(1,5).reshape(2,2)
arr1
array([[1, 2],
       [3, 4]])
la.det(arr1)
-2.0000000000000004
la.inv(arr1)
array([[-2. ,  1. ],
       [ 1.5, -0.5]])
arr1@la.inv(arr1)
array([[1.00000000e+00, 1.11022302e-16],
       [0.00000000e+00, 1.00000000e+00]])
np.dot(arr1,la.inv(arr1))
array([[1.00000000e+00, 1.11022302e-16],
       [0.00000000e+00, 1.00000000e+00]])
#矩阵奇异分解
U,s,V=la.svd(arr1)
U,s,V
(array([[-0.40455358, -0.9145143 ],
        [-0.9145143 ,  0.40455358]]),
 array([5.4649857 , 0.36596619]),
 array([[-0.57604844, -0.81741556],
        [ 0.81741556, -0.57604844]]))

注意, s是个对角方阵,这里用一维数组做了简写。

np.diag(s) 是其本该有的样子。

#重构矩阵
U@np.diag(s)@V
array([[1., 2.],
       [3., 4.]])
plt.figure(figsize=(2,2))
plt.imshow(img_r,cmap="hot")
<matplotlib.image.AxesImage at 0x24362cde2b0>

U,s,V=la.svd(img_r)
U.shape,s.shape,V.shape
((768, 768), (768,), (1024, 1024))
#重构图像
S=np.zeros((U.shape[1],V.shape[0]))
np.fill_diagonal(S,s)
S.shape
(768, 1024)
plt.imshow(U@S@V)
<matplotlib.image.AxesImage at 0x24362d45160>

#只用一部分来重构图像
k=500
appro_imag=U@S[:,:20]@V[:20,:]
plt.imshow(appro_imag)
<matplotlib.image.AxesImage at 0x2436554cdc0>

结论: 使用奇异值分解可以获得图像的近似表示。此技术可以用于图像压缩或者,图像的主成分分析。

appro_imag.shape
(768, 1024)

实验2 请准备一张图片,按照上面的过程进行矩阵奇异分解,要求保存前50个特征值进行压缩。

程序设计

from PIL import Image
image = misc.ascent()
plt.imshow(image)
<matplotlib.image.AxesImage at 0x243661b3340>

U,s,V=la.svd(image)
U.shape,s.shape,V.shape
S=np.zeros((U.shape[1],V.shape[0]))
np.fill_diagonal(S,s)
k=50
appro_imag=U@S[:,:k]@V[:k,:]
plt.imshow(appro_imag)
<matplotlib.image.AxesImage at 0x2436348dc10>

具体分析

这段代码使用了PIL库中的Image模块,通过其ascent()函数生成了一个图像。然后使用numpy和scipy的线性代数函数对图像进行奇异值分解(SVD)处理。以下是代码的具体分析:

  1. 导入PIL库中的Image模块。
  2. 使用ascent()函数生成一个图像image。
  1. 使用numpy的线性代数函数la.svd()对图像进行奇异值分解,将结果分别赋给U、s和V三个变量。
  2. 使用U.shape、s.shape和V.shape分别获得U、s和V的形状(维度)信息,并输出。
  3. 创建一个全零矩阵S,其行数为U的列数,列数为V的行数。
  4. 使用numpy的fill_diagonal()函数将s数组中的元素按对角线方向填充到S矩阵之中,通过对角线填充的方式将奇异值转化为奇异值矩阵。
  5. 设置一个参数k为50,表示提取前k个奇异值和对应的奇异向量。
  6. 使用U、S和V的切片操作,分别选取前k列的奇异向量和前k行的奇异值矩阵,并通过矩阵乘法运算得到近似图像。
  7. 使用plt的imshow()函数将近似图像显示出来。

总体而言,这段代码是对图像进行奇异值分解,并根据提取到的奇异值和奇异向量重构了一个近似图像,并将其显示出来。

目录
相关文章
|
19天前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
73 7
|
18天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
4天前
|
数据可视化 前端开发 数据挖掘
使用Folium在Python中进行地图可视化:全面指南
Folium是基于Python的交互式地图可视化库,依托Leaflet.js实现地理空间数据展示。本文从安装、基础使用到高级功能全面解析Folium:包括创建地图、添加标记、保存文件,以及绘制热力图、多边形和Choropleth地图等高级操作。通过展示北京市景点与全球地震数据的实际案例,结合性能优化、自定义样式和交互性增强技巧,帮助用户掌握Folium的核心功能与应用潜力,为数据分析提供直观支持。
32 2
|
19天前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
27天前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
58 9
Python与机器学习:使用Scikit-learn进行数据建模
|
3月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
886 7
|
4月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
183 5
|
4月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习

热门文章

最新文章