机器学习k近邻算法鸢尾花种类预测

简介: 机器学习k近邻算法鸢尾花种类预测

1 再识K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
  • n_neighbors:
  • int,可选(默认= 5),k_neighbors查询默认使用的邻居数
  • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’}

快速k近邻搜索算法,默认参数为auto,可以理解为算法自己决定合适的搜索算法。除此之外,用户也可以自己指定搜索算法ball_tree、kd_tree、brute方法进行搜索,

  • brute是蛮力搜索,也就是线性扫描,当训练集很大时,计算非常耗时。
  • kd_tree,构造kd树存储数据以便对其进行快速检索的树形数据结构,kd树也就是数据结构中的二叉树。以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高。
  • ball tree是为了克服kd树高维失效而发明的,其构造过程是以质心C和半径r分割样本空间,每个节点是一个超球体。

2 案例:鸢尾花种类预测

2.1 数据集介绍

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:

2.2 步骤分析

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习(模型训练)
  • 5.模型评估

2.3 代码过程

  • 导入模块
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
  • 先从sklearn当中获取数据集,然后进行数据集的分割
# 1.获取数据集
iris = load_iris()
# 2.数据基本处理
# x_train,x_test,y_train,y_test为训练集特征值、测试集特征值、训练集目标值、测试集目标值
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=22)
  • 进行数据标准化 – 特征值的标准化
# 3、特征工程:标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
  • 模型进行训练预测
# 4、机器学习(模型训练)
estimator = KNeighborsClassifier(n_neighbors=9)
estimator.fit(x_train, y_train)
# 5、模型评估
# 方法1:比对真实值和预测值
y_predict = estimator.predict(x_test)
print("预测结果为:\n", y_predict)
print("比对真实值和预测值:\n", y_predict == y_test)
# 方法2:直接计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

3 案例小结

在本案例中,具体完成内容有:

  • 使用可视化加载和探索数据,以确定特征是否能将不同类别分开。
  • 通过标准化数字特征并随机抽样到训练集和测试集来准备数据。
  • 通过统计学,精确度度量进行构建和评估机器学习模型。

4 KNN算法总结

4.1 k近邻算法优缺点汇总

  • 优点:
  • 简单有效
  • 重新训练的代价低
  • 适合类域交叉样本

  • KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
  • 适合样本容量比较大的类域自动分类
  • 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分
样本量、样本个数与样本容量的关系举例
一个箱子最多能放50个苹果(样本),从中取样30个。
在这里,苹果是样本,箱子最多能放的个数(即苹果的总数)50是这个样本的样本(容)量,而所抽取的样本个数30则是样本量。

  • 缺点:
  • 惰性学习
  • KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多
  • 类别评分不是规格化
  • 不像一些通过概率评分的分类
  • 输出可解释性不强
  • 例如决策树的输出可解释性就较强
  • 对不均衡的样本不擅长

当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。

  • 无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
  • 计算量较大
  • 目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。
目录
相关文章
|
1天前
|
机器学习/深度学习 数据采集 算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
|
4天前
|
机器学习/深度学习 分布式计算 算法
在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)
【6月更文挑战第28天】在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)、数据规模与特性(大数据可能适合分布式算法或深度学习)、性能需求(准确性、速度、可解释性)、资源限制(计算与内存)、领域知识应用以及实验验证(交叉验证、模型比较)。迭代过程包括数据探索、模型构建、评估和优化,结合业务需求进行决策。
9 0
|
4天前
|
机器学习/深度学习 算法
机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略
【6月更文挑战第28天】**机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略。工具如scikit-optimize、Optuna助力优化,迁移学习和元学习提供起点,集成方法则通过多模型融合提升性能。资源与时间考虑至关重要,交叉验证和提前停止能有效防止过拟合。**
10 0
|
2月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
2月前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
|
2月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【2月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过有效的数据处理策略、合理的特征工程、选择适宜的学习算法以及进行细致的参数调优来提升模型性能。我们将剖析标准化与归一化的差异,探索主成分分析(PCA)的降维魔力,讨论支持向量机(SVM)和随机森林等算法的适用场景,并最终通过网格搜索(GridSearchCV)来实现参数的最优化。本文旨在为读者提供一条清晰的路径,以应对机器学习项目中的挑战,从而在实际应用中取得更精准的预测结果和更强的泛化能力。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
【机器学习】包裹式特征选择之拉斯维加斯包装器(LVW)算法
【机器学习】包裹式特征选择之拉斯维加斯包装器(LVW)算法
146 0
|
2月前
|
机器学习/深度学习 存储 算法
【机器学习】包裹式特征选择之基于遗传算法的特征选择
【机器学习】包裹式特征选择之基于遗传算法的特征选择
148 0
|
2月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
140 14
|
2月前
|
机器学习/深度学习 运维 算法
机器学习的魔法(三)解析无监督学习的黑科技,揭秘新闻话题背后的神奇算法
机器学习的魔法(三)解析无监督学习的黑科技,揭秘新闻话题背后的神奇算法