【数据科学导论】实验九:线性回归与波士顿房价预测

简介: 【数据科学导论】实验九:线性回归与波士顿房价预测

线性回归与波士顿房价预测

一、实验目的

  • 掌握机器学习的基本概念
  • 掌握线性回归的实现过程
  • 应用LinearRegression实现回归预测
  • 知道回归算法的评估标准及其公式
  • 知道过拟合与欠拟合的原因以及解决方法

二、实验设备

  • Jupter Notebook

三、实验内容

人们在生活中经常遇到分类与预测的问题,目标变量可能受多个因素影响,根据相关系数可以判断影响因子的重要性。正如一个病人得某种病是多种因素影响造成的。

房子作为居住的场所,对每个人而言是不可或缺的。而房价的高低也是受多种因素的影响。房子所处的城市是一线还是二线,房子周边的交通便利程度,房子附近是否存在医院或者学校等,众多因素都会影响房价。


“回归”是由英国著名生物学家兼统计学家高尔顿(Francis Galton,1822~1911.生物学家达尔文的表弟)在研究人类遗传问题时提出来的。19世纪高斯系统地提出最小二乘估计,从而使回归分析得到蓬勃发展。


波士顿房价数据源于美国某经济学杂志上,分析研究波士顿房价( Boston HousePrice)的数据集。数据集中的每一行数据都是对波士顿周边或城镇房价的情况描述,本实验以波士顿房价数据集为线性回归案例数据,进行模型训练,预测波士顿房价。

3.1 了解数据

首先导入需要的包

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
from sklearn import preprocessing

加载波士顿房价的数据集

data = load_boston()
data_pd = pd.DataFrame(data.data,columns=data.feature_names)
data_pd['price'] = data.target

在拿到数据之后,先要查看数据的类型,是否有空值,数据的描述信息等等。

可以看到数据都是定量数据。

# 查看数据类型
data_pd.describe()

image.pngimage.png

接下来要查看数据是否存在空值,从结果来看数据不存在空值。

# 查看空缺值
data_pd.isnull().sum()
CRIM       0
ZN         0
INDUS      0
CHAS       0
NOX        0
RM         0
AGE        0
DIS        0
RAD        0
TAX        0
PTRATIO    0
B          0
LSTAT      0
price      0
dtype: int64

可以看出来数据集中没有空缺值。

# 查看数据大小
data_pd.shape
(506, 14)

数据集有14列,506行

查看数据前5行,同时给出数据特征的含义

data_pd.head()

image.pngimage.png

数据集变量说明下,方便大家理解数据集变量代表的意义。

  • CRIM: 城镇人均犯罪率
  • ZN: 住宅用地所占比例
  • INDUS: 城镇中非住宅用地所占比例
  • CHAS: 虚拟变量,用于回归分析
  • NOX: 环保指数
  • RM: 每栋住宅的房间数
  • AGE: 1940 年以前建成的自住单位的比例
  • DIS: 距离 5 个波士顿的就业中心的加权距离
  • RAD: 距离高速公路的便利指数
  • TAX: 每一万美元的不动产税率
  • PTRATIO: 城镇中的教师学生比例
  • B: 城镇中的黑人比例
  • LSTAT: 地区中有多少房东属于低收入人群
  • price: 自住房屋房价中位数(也就是均价)

3.2 分析数据

计算每一个特征和price的相关系数

data_pd.corr()['price']
CRIM      -0.388305
ZN         0.360445
INDUS     -0.483725
CHAS       0.175260
NOX       -0.427321
RM         0.695360
AGE       -0.376955
DIS        0.249929
RAD       -0.381626
TAX       -0.468536
PTRATIO   -0.507787
B          0.333461
LSTAT     -0.737663
price      1.000000
Name: price, dtype: float64

将相关系数绝对值大于0.5的特征画图显示出来:

corr = data_pd.corr()
corr = corr['price']
corr[abs(corr)>0.5].sort_values().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x13d1990e5e0>

可以看出LSTAT、PTRATIO、RM三个特征的相关系数大于0.5,下面画出三个特征关于price的散点图。

(1)LSTAT和price的散点图

data_pd.plot(kind="scatter",x="LSTAT",y="price")
<matplotlib.axes._subplots.AxesSubplot at 0x13d198bc3d0>

data_pd.plot(kind="scatter",x="PTRATIO",y="price")
<matplotlib.axes._subplots.AxesSubplot at 0x13d199dca60>

data_pd.plot(kind="scatter",x="RM",y="price")
<matplotlib.axes._subplots.AxesSubplot at 0x13d19a2f430>

可以看出三个特征和价格都有明显的线性关系。

3.3 建立模型

(一)使用一个变量进行预测

(1)使用LASTAT做一元线性回归

首先制作训练集和测试集

# 制作训练集和测试集的数据
feature_cols = ['LSTAT']
X = data_pd[feature_cols]
y = data_pd['price']
# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
y.describe()
count    506.000000
mean      22.532806
std        9.197104
min        5.000000
25%       17.025000
50%       21.200000
75%       25.000000
max       50.000000
Name: price, dtype: float64
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)
print(linreg.intercept_)
# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
63.81849572918555
[('PTRATIO', -2.2442477329043706)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 74.6287048997467

画图

import seaborn as sns #seaborn就是在matplot的基础上进行了进一步封装
sns.lmplot(x='LSTAT', y='price', data=data_pd, aspect=1.5, scatter_kws={'alpha':0.2})
<seaborn.axisgrid.FacetGrid at 0x13d1b0f5a00>

(2)使用PTRATIO做一元线性回归

# 制作训练集和测试集的数据
feature_cols = ['PTRATIO']
X = data_pd[feature_cols]
y = data_pd['price']
# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)
print(linreg.intercept_)
# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
61.54376809966996
[('PTRATIO', -2.1175617470715635)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 54.541969092283985

画图

import seaborn as sns #seaborn就是在matplot的基础上进行了进一步封装
sns.lmplot(x='PTRATIO', y='price', data=data_pd, aspect=1.5, scatter_kws={'alpha':0.2})
<seaborn.axisgrid.FacetGrid at 0x13d1b140490>

(3)使用RM做一元线性回归

# 制作训练集和测试集的数据
feature_cols = ['RM']
X = data_pd[feature_cols]
y = data_pd['price']
# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)
print(linreg.intercept_)
# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
-32.662292886508155
[('RM', 8.738014969584246)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 51.81438126437724

画图

import seaborn as sns #seaborn就是在matplot的基础上进行了进一步封装
sns.lmplot(x='RM', y='price', data=data_pd, aspect=1.5, scatter_kws={'alpha':0.2})
<seaborn.axisgrid.FacetGrid at 0x13d1b1addc0>

根据均方根误差进行模型比较

答案:RM一元回归分析的均方根误差最小,所以该模型最好

(二)使用多元线性回归分析进行预测

使用LSTAT,PTRATIO,RM做多元线性回归分析

首先制作训练集和测试集

# 制作训练集和测试集的数据
feature_cols = ['LSTAT','PTRATIO','RM']
X = data_pd[feature_cols]
y = data_pd['price']
# 分割训练集和测试集
train_X,test_X,train_Y,test_Y = train_test_split(X,y)
# 加载模型
linreg = LinearRegression()
# 拟合数据
linreg.fit(train_X,train_Y)
print(linreg.intercept_)
# pair the feature names with the coefficients  
b=list(zip(feature_cols, linreg.coef_))
b
24.145147504479777
[('LSTAT', -0.6077646658186993),
 ('PTRATIO', -0.9890097312795556),
 ('RM', 3.894020674969254)]
# 进行预测
y_predict = linreg.predict(test_X)
# 计算均方根误差
print("均方根误差=",metrics.mean_squared_error(y_predict,test_Y))
均方根误差= 22.06146178562167

画图比较

将训练好的测试集和原始测试集绘图比较

import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['font.sans-serif'] = 'SimHei'
fig = plt.figure(figsize=(10,6)) ##设定空白画布,并制定大小
##用不同的颜色表示不同数据
plt.plot(range(test_Y.shape[0]),test_Y,color="blue", linewidth=1.5, linestyle="-")
plt.plot(range(test_Y.shape[0]),y_predict,color="red", linewidth=1.5, linestyle="-.")
plt.legend(['真实值','预测值'])
plt.show() ##显示图片

c1b2d25f8249470c9baceacde9b63793.png


根据均方根误差进行模型比较

答案:多元线性回归分析的均方根误差最小,所以该模型最好

目录
相关文章
|
8月前
|
机器学习/深度学习 人工智能 算法
机器学习-线性模型(波士顿房价预测)
机器学习-线性模型(波士顿房价预测)
|
机器学习/深度学习 算法 数据处理
机器学习入门实战加州房价预测
机器学习入门实战加州房价预测
315 0
|
8月前
|
机器学习/深度学习 数据可视化 Python
机器学习之利用线性回归预测波士顿房价和可视化分析影响房价因素实战(python实现 附源码 超详细)
机器学习之利用线性回归预测波士顿房价和可视化分析影响房价因素实战(python实现 附源码 超详细)
542 0
|
5月前
|
机器学习/深度学习 数据采集 人工智能
《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
这篇文章详细介绍了如何使用线性回归算法实现波士顿房价预测任务,包括数据读取、形状变换、集划分、归一化处理、模型设计、前向计算以及损失函数的计算等步骤,并提供了相应的Python代码实现。
 《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
|
5月前
|
机器学习/深度学习 算法 前端开发
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
使用Numpy实现梯度下降算法来构建和训练线性模型进行波士顿房价预测的过程,并提供了模型保存的方法,同时提出了几个关于梯度计算、参数更新和神经网络训练的作业题目。
 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
|
5月前
|
机器学习/深度学习 算法 程序员
《零基础实践深度学习》波士顿房价预测任务 02
这篇文章通过"波士顿房价预测"任务,介绍了使用Python和Numpy构建神经网络模型的基本思路和操作,首先以线性回归模型为例,解释了神经网络中损失函数的选择和模型的构建过程。
|
8月前
|
数据挖掘
【数据挖掘】多元线性回归对波士顿房价分析实战(超详细 附源码)
【数据挖掘】多元线性回归对波士顿房价分析实战(超详细 附源码)
309 0
|
机器学习/深度学习 算法 API
机器学习梯度下降法应用波士顿房价预测
机器学习梯度下降法应用波士顿房价预测
188 0
|
机器学习/深度学习 算法框架/工具
【深度学习】实验01 波士顿房价预测
【深度学习】实验01 波士顿房价预测
202 0
|
机器学习/深度学习 存储 数据处理
波士顿房价预测——机器学习入门级案例
机器学习入门的”Hello World“,学习机器学习的必备案例,通过这篇文章,我们将会讲解基于numpy的波士顿房价预测是怎样实现的。同时我也会在这篇文章中边讲基础边实现,有兴趣的小伙伴多多支持~
628 0
波士顿房价预测——机器学习入门级案例

热门文章

最新文章