1.3 波士顿房价预测任务
上一节我们初步认识了 神经网络的基本概念(如神经元、多层连接、前向计算、计算图)和模型结构三要素(模型假设、评价函数和优化算法) 。本节将以“波士顿房价预测”任务为例,向读者介绍使用Python语言和Numpy库来构建神经网络模型的思考过程和操作方法。
波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“Hello World”。和大家对房价的普遍认知相同,波士顿地区的房价受诸多因素影响。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,如图1所示。
图1:波士顿房价影响因素示意图
对于预测问题,可以根据预测输出的类型是连续的实数值,还是离散的标签,区分为回归任务和分类任务。因为房价是一个连续值,所以房价预测显然是一个回归任务。下面我们尝试用最简单的线性回归模型解决这个问题,并用神经网络来实现这个模型。
1.3.1 线性回归模型
思考:
为什么要以均方误差作为损失函数?即将模型在每个训练样本上的预测误差加和,来衡量整体样本的准确性。这是因为损失函数的设计不仅仅要考虑“合理性”(有物理意义),同样需要考虑“易解性”(易于求解),这个问题在后面的内容中会详细阐述。
1.3.2 线性回归模型的神经网络结构
神经网络的标准结构中每个神经元由加权和与非线性变换构成,然后将多个神经元分层的摆放并连接形成神经网络。线性回归模型可以认为是神经网络模型的一种极简特例,是一个只有加权和、没有非线性变换的神经元(无需形成网络),如图2所示。
图2:线性回归模型的神经网络结构