【深度学习】实验01 波士顿房价预测

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【深度学习】实验01 波士顿房价预测

波士顿房价预测

波士顿房价预测问题是根据一些特定的房屋属性(如房间数量,面积等)来预测波士顿地区房屋的中位数价格。这个问题是一个典型的回归问题,目标是利用给定的特征数据来预测连续的房价数值。

机器学习-Sklearn

# 导入机器学习库
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge, LogisticRegression, RidgeCV
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.externals import joblib
from sklearn.metrics import r2_score
from sklearn.neural_network import MLPRegressor
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
# 波士顿房价数据集
lb = load_boston()
lb
   {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
            4.9800e+00],
           [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
            9.1400e+00],
           [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
            4.0300e+00],
           ...,
           [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
            5.6400e+00],
           [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
            6.4800e+00],
           [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
            7.8800e+00]]),
    'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
           18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
           15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
           13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
           21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
           35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
           19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
           20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
           23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
           33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
           21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
           20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
           23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
           15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
           17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
           25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
           23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
           32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,
           34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,
           20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
           26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
           31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
           22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
           42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,
           36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
           32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
           20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
           20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
           22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
           21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
           19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
           32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
           18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,
           16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,
           13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3,  8.8,
            7.2, 10.5,  7.4, 10.2, 11.5, 15.1, 23.2,  9.7, 13.8, 12.7, 13.1,
           12.5,  8.5,  5. ,  6.3,  5.6,  7.2, 12.1,  8.3,  8.5,  5. , 11.9,
           27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,  7. ,  7.2,  7.5, 10.4,
            8.8,  8.4, 16.7, 14.2, 20.8, 13.4, 11.7,  8.3, 10.2, 10.9, 11. ,
            9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4,  9.6,  8.7,  8.4, 12.8,
           10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
           15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
           19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
           29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
           20.6, 21.2, 19.1, 20.6, 15.2,  7. ,  8.1, 13.6, 20.1, 21.8, 24.5,
           23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
    'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
           'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
    'DESCR': "Boston House Prices dataset\n===========================\n\nNotes\n------\nData Set Characteristics:  \n\n    :Number of Instances: 506 \n\n    :Number of Attributes: 13 numeric/categorical predictive\n    \n    :Median Value (attribute 14) is usually the target\n\n    :Attribute Information (in order):\n        - CRIM     per capita crime rate by town\n        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.\n        - INDUS    proportion of non-retail business acres per town\n        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n        - NOX      nitric oxides concentration (parts per 10 million)\n        - RM       average number of rooms per dwelling\n        - AGE      proportion of owner-occupied units built prior to 1940\n        - DIS      weighted distances to five Boston employment centres\n        - RAD      index of accessibility to radial highways\n        - TAX      full-value property-tax rate per $10,000\n        - PTRATIO  pupil-teacher ratio by town\n        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town\n        - LSTAT    % lower status of the population\n        - MEDV     Median value of owner-occupied homes in $1000's\n\n    :Missing Attribute Values: None\n\n    :Creator: Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttp://archive.ics.uci.edu/ml/datasets/Housing\n\n\nThis dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n\nThe Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. Environ. Economics & Management,\nvol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980.   N.B. Various transformations are used in the table on\npages 244-261 of the latter.\n\nThe Boston house-price data has been used in many machine learning papers that address regression\nproblems.   \n     \n**References**\n\n   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n   - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)\n"}
# 划分训练集与测试集
X_train, X_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size = 0.2)
X_train, X_test, y_train, y_test
   (array([[6.72400e-02, 0.00000e+00, 3.24000e+00, ..., 1.69000e+01,
            3.75210e+02, 7.34000e+00],
           [3.75780e-01, 0.00000e+00, 1.05900e+01, ..., 1.86000e+01,
            3.95240e+02, 2.39800e+01],
           [1.39134e+01, 0.00000e+00, 1.81000e+01, ..., 2.02000e+01,
            1.00630e+02, 1.51700e+01],
           ...,
           [2.89600e-01, 0.00000e+00, 9.69000e+00, ..., 1.92000e+01,
            3.96900e+02, 2.11400e+01],
           [1.42310e-01, 0.00000e+00, 1.00100e+01, ..., 1.78000e+01,
            3.88740e+02, 1.04500e+01],
           [1.75050e-01, 0.00000e+00, 5.96000e+00, ..., 1.92000e+01,
            3.93430e+02, 1.01300e+01]]),
    array([[4.68400e-02, 0.00000e+00, 3.41000e+00, ..., 1.78000e+01,
            3.92180e+02, 8.81000e+00],
           [1.00245e+00, 0.00000e+00, 8.14000e+00, ..., 2.10000e+01,
            3.80230e+02, 1.19800e+01],
           [1.54450e-01, 2.50000e+01, 5.13000e+00, ..., 1.97000e+01,
            3.90680e+02, 6.86000e+00],
           ...,
           [6.26300e-02, 0.00000e+00, 1.19300e+01, ..., 2.10000e+01,
            3.91990e+02, 9.67000e+00],
           [5.82401e+00, 0.00000e+00, 1.81000e+01, ..., 2.02000e+01,
            3.96900e+02, 1.07400e+01],
           [1.87000e-02, 8.50000e+01, 4.15000e+00, ..., 1.79000e+01,
            3.92430e+02, 6.36000e+00]]),
    array([22.6, 19.3, 11.7, 20. , 24.3,  8.5, 14.6, 28.7, 15.4, 30.3, 21.4,
           19.1, 20.5, 19.3, 50. , 36.2, 25. , 28.5, 17.8, 18.9, 23.9, 16.5,
           30.8, 19.9, 23.2, 18.8, 32. , 29.4, 12. , 20.7, 44.8, 19.6, 19.3,
           10.5, 14.1, 15.6, 23.8, 50. , 48.3, 23.7, 18.6, 33.8, 27.5, 20.1,
           20.7, 35.1, 25. , 24.1, 32.7, 14.4, 13.5, 12.8, 33.2, 16.8, 21.6,
           28. , 23.9, 20.4, 10.8, 22.9, 23.2, 34.7, 14.3, 22.6, 18.7, 21.5,
           33.2, 22.2, 33. , 20.4, 27.9, 23.1, 19.1, 15.6, 29.6, 24.4, 23.5,
           13.6, 19.2, 29.1, 35.2, 22.2, 17.2,  9.6, 18.7, 13.4, 18.8, 25.1,
           15. , 21.1, 46.7, 18.4, 19.4, 17.2,  8.8, 14.5, 19.9, 38.7, 16.6,
           24.8, 29.9, 20.2, 19.8, 23. , 33.1, 22. , 18.3, 12.7, 20.9, 11. ,
           25. , 18.5, 45.4, 17.7, 21.8, 19.4, 30.7, 18.6, 23.2, 24.8, 22.6,
           29.8, 27.5, 22.8, 29.6, 50. , 29. , 10.5, 21.4, 21.9, 10.4, 20.6,
           28.7, 37. , 20.6, 31.1, 23.9, 19.1, 30.1, 13.1, 16.7, 23.9, 23.8,
           19.3, 18.1, 13.8, 16.8, 50. , 24.5, 26.6, 50. , 32.4, 17.5, 25. ,
           14.5, 43.8, 19.5, 18.5, 13.6, 19.4, 11.3, 18.5, 22.2, 34.6, 24. ,
           50. , 22.2, 18.2, 11.7, 22.2, 18.7, 19.3, 21.7, 21.2,  9.5, 25. ,
            6.3, 22. , 17.8, 10.4, 23.1, 30.5,  7.5, 13.1, 20.5, 21.8, 20.8,
           19.5, 22.8, 19.6, 21.4, 13.5, 17.1, 36.5, 24.6,  7.2, 22.9, 33.4,
           15.6,  7. , 16.6, 12.7, 26.2, 28.6, 34.9, 16.3, 31.5, 15.2, 10.9,
           13.9, 12.1, 22.1, 31. , 19.6, 21.4, 41.3, 23.4, 50. , 41.7, 15.3,
           15. , 17.1, 20. , 20.3, 23. , 24.2, 50. , 19.4, 35.4, 20.3,  8.3,
           10.2, 17.2, 18. , 17.4, 32.9, 21.1, 20.1, 21.5, 24.3, 24.5, 48.5,
           24.6, 20.8, 50. , 36.2, 14. , 21.7, 23.7, 26.6, 24.7, 24.5, 10.2,
           36.4, 17.8, 19.9, 13.3, 25. , 13. ,  8.4, 13.4, 26.5, 27.5, 17.6,
           31.7, 32.2, 22.7, 10.2, 16.1, 20.4, 20. , 20.6, 16.7, 20.1, 19.5,
           13.2, 21.2, 50. , 42.8,  8.5, 42.3, 19.8, 17.9, 24.4, 10.9, 16.1,
           23.1, 50. , 23.1, 24.3, 22.3, 36.1, 22. , 17.3, 13.8, 15. , 50. ,
           12.3,  9.7, 13.3, 24.8, 19.4, 39.8, 23.7, 12.6, 31.5, 21.7, 20.3,
           13.1, 15.7, 19.6, 13.8, 22.5, 22. , 14.9, 20.2, 20.6, 18.9, 14.8,
           21. , 18.4, 22. , 50. , 25.2, 19.8, 23.8, 14.1, 33.4, 12.5, 23.1,
           24.7, 19.1, 21.4, 13.3, 13.8, 23.1, 27.5, 25.3, 50. , 23.7, 17.1,
            5. , 43.5, 17.4,  8.3, 17.8, 18.4, 22.3, 24.8, 15.6, 16.2, 17.4,
           28.2, 13.9, 17. , 31.2, 24.1, 32.5, 26.4, 46. , 17.8, 20.5, 16. ,
            5. , 28.7, 30.1, 16.2, 29.8, 18.2, 20.6, 43.1, 21.2, 16.1, 21.2,
           18.3, 21.9, 37.6, 50. ,  8.8, 22. , 29. , 23.8, 15.1, 25. , 21.7,
           14.5, 13.8, 23.6, 21.9, 17.5, 23. , 23.9, 22. , 22.5, 37.3, 31.6,
           16.5, 27.1, 21.2, 19.9, 15.6, 19.7, 18.5, 24.7]),
    array([22.6, 21. , 23.3,  7.4, 16.4, 30.1, 35.4, 27.9, 21.7, 15.4, 22.9,
           20.9, 22.9, 33.3, 28.1,  8.4,  7.2, 36. , 22.5, 19.4, 33.1, 14.1,
           14.9, 37.2, 14.4, 23.6,  8.1, 23.3, 24.4, 21.7, 28.4, 27.1, 20. ,
           20.4, 15.2, 14.3, 19.7, 32. , 13.4, 20.6, 11.9, 48.8, 14.2, 18.9,
           21.7, 20.1, 24. , 11.8, 19.6, 24.4, 13.1,  5.6, 50. , 11.9, 15.2,
           29.1, 23.4, 34.9, 18.9, 22.8, 13.4, 44. ,  7.2, 20.1, 22.4, 17.5,
           20.8, 18.2, 22.7, 25. ,  7. , 24.1, 26.6, 20.3, 19.5, 37.9, 21. ,
           12.7, 26.7, 31.6, 28.4, 23.2, 23.3, 19. , 22.6, 19.2, 11.8, 22.8,
            8.7, 26.4, 19. , 20. , 34.9, 27. , 23.3, 14.6, 11.5, 14.9, 21.6,
           22.4, 23. , 23.1]))
# 为数据增加一个维度,相当于把[1, 5, 10]变成[[1, 5, 10]]
# 在新版sklearn中,所有数据都应该是二维矩阵,哪怕它只是单独一行或一列
y_train = y_train.reshape(-1,1)
y_test = y_test.reshape(-1,1)
# 进行标准化
std_x = StandardScaler()
X_train = std_x.fit_transform(X_train)
X_test = std_x.transform(X_test)
std_y = StandardScaler()
y_train = std_y.fit_transform(y_train)
y_test = std_y.transform(y_test)
#线性回归器LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
print("r2 score of Linear regression is",r2_score(y_test,lr.predict(X_test)))
r2 score of Linear regression is 0.7778158147557528
#岭回归
cv = RidgeCV(alphas=np.logspace(-3, 2, 100))
cv.fit (X_train , y_train)
print("r2 score of Linear regression is",r2_score(y_test,cv.predict(X_test)))
r2 score of Linear regression is 0.7798009579941207
#线性回归器SGDRegressor
sgd = SGDRegressor()
sgd.fit(X_train, y_train)
print("r2 score of Linear regression is",r2_score(y_test,sgd.predict(X_test)))
r2 score of Linear regression is 0.77430200232832

深度学习-Keras

程序设计

# 使用Keras试试
from keras.models import Sequential
from keras.layers import Dense
#基准NN
#使用标准化后的数据
seq = Sequential()
#构建神经网络模型
#input_dim来隐含的指定输入数据shape
seq.add(Dense(64, activation='relu',input_dim=lb.data.shape[1]))
seq.add(Dense(64, activation='relu'))
seq.add(Dense(1, activation='relu'))
seq.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])
seq.fit(X_train, y_train,  epochs=300, batch_size = 16, shuffle = False)
score = seq.evaluate(X_test, y_test,batch_size=16) #loss value & metrics values
print("score:",score)
print('r2 score:',r2_score(y_test, seq.predict(X_test)))
Using TensorFlow backend.
WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py:422: The name tf.global_variables is deprecated. Please use tf.compat.v1.global_variables instead.
Epoch 1/300
404/404 [==============================] - 0s 688us/step - loss: 0.8272 - mae: 0.6820
Epoch 2/300
404/404 [==============================] - 0s 223us/step - loss: 0.5090 - mae: 0.5378
Epoch 3/300
404/404 [==============================] - 0s 114us/step - loss: 0.4726 - mae: 0.5096
Epoch 4/300
404/404 [==============================] - 0s 112us/step - loss: 0.4600 - mae: 0.4980
Epoch 5/300
404/404 [==============================] - 0s 299us/step - loss: 0.4517 - mae: 0.4884
Epoch 6/300
404/404 [==============================] - 0s 148us/step - loss: 0.4444 - mae: 0.4838
Epoch 7/300
404/404 [==============================] - 0s 109us/step - loss: 0.4388 - mae: 0.4784
Epoch 8/300
404/404 [==============================] - 0s 148us/step - loss: 0.4342 - mae: 0.4745
Epoch 9/300
404/404 [==============================] - 0s 166us/step - loss: 0.4316 - mae: 0.4721
Epoch 10/300
404/404 [==============================] - 0s 194us/step - loss: 0.4271 - mae: 0.4695
Epoch 11/300
404/404 [==============================] - 0s 110us/step - loss: 0.4242 - mae: 0.4667
Epoch 12/300
404/404 [==============================] - 0s 109us/step - loss: 0.4212 - mae: 0.4646
Epoch 13/300
404/404 [==============================] - 0s 190us/step - loss: 0.4190 - mae: 0.4630
Epoch 14/300
404/404 [==============================] - 0s 297us/step - loss: 0.4165 - mae: 0.4602
Epoch 15/300
404/404 [==============================] - 0s 129us/step - loss: 0.4142 - mae: 0.4584
Epoch 16/300
404/404 [==============================] - 0s 116us/step - loss: 0.4130 - mae: 0.4575
Epoch 17/300
404/404 [==============================] - 0s 167us/step - loss: 0.4098 - mae: 0.4558
Epoch 18/300
404/404 [==============================] - 0s 218us/step - loss: 0.4082 - mae: 0.4540
Epoch 19/300
404/404 [==============================] - 0s 253us/step - loss: 0.4072 - mae: 0.4529
Epoch 20/300
404/404 [==============================] - 0s 189us/step - loss: 0.4053 - mae: 0.4511
Epoch 21/300
404/404 [==============================] - 0s 235us/step - loss: 0.4042 - mae: 0.4501
Epoch 22/300
404/404 [==============================] - 0s 360us/step - loss: 0.4028 - mae: 0.4477
Epoch 23/300
404/404 [==============================] - 0s 184us/step - loss: 0.4020 - mae: 0.4463
Epoch 24/300
404/404 [==============================] - 0s 250us/step - loss: 0.4009 - mae: 0.4456
Epoch 25/300
404/404 [==============================] - 0s 331us/step - loss: 0.4002 - mae: 0.4446
Epoch 26/300
404/404 [==============================] - 0s 170us/step - loss: 0.3994 - mae: 0.4429
Epoch 27/300
404/404 [==============================] - 0s 159us/step - loss: 0.3982 - mae: 0.4430
Epoch 28/300
404/404 [==============================] - 0s 198us/step - loss: 0.3990 - mae: 0.4427
Epoch 29/300
404/404 [==============================] - 0s 224us/step - loss: 0.3970 - mae: 0.4412
Epoch 30/300
404/404 [==============================] - 0s 189us/step - loss: 0.3966 - mae: 0.4399
Epoch 31/300
404/404 [==============================] - 0s 165us/step - loss: 0.3894 - mae: 0.4406
Epoch 32/300
404/404 [==============================] - 0s 116us/step - loss: 0.3777 - mae: 0.4396
Epoch 33/300
404/404 [==============================] - 0s 87us/step - loss: 0.3740 - mae: 0.4369
Epoch 34/300
404/404 [==============================] - 0s 61us/step - loss: 0.3708 - mae: 0.4341
Epoch 35/300
404/404 [==============================] - 0s 130us/step - loss: 0.3690 - mae: 0.4330
Epoch 36/300
404/404 [==============================] - 0s 93us/step - loss: 0.3670 - mae: 0.4315
Epoch 37/300
404/404 [==============================] - ETA: 0s - loss: 0.3741 - mae: 0.447 - 0s 87us/step - loss: 0.3653 - mae: 0.4295
Epoch 38/300
404/404 [==============================] - 0s 64us/step - loss: 0.3633 - mae: 0.4279
Epoch 39/300
404/404 [==============================] - 0s 119us/step - loss: 0.3622 - mae: 0.4272
Epoch 40/300
404/404 [==============================] - 0s 76us/step - loss: 0.3604 - mae: 0.4254
Epoch 41/300
404/404 [==============================] - 0s 75us/step - loss: 0.3587 - mae: 0.4243
Epoch 42/300
404/404 [==============================] - 0s 66us/step - loss: 0.3578 - mae: 0.4238
Epoch 43/300
404/404 [==============================] - 0s 85us/step - loss: 0.3565 - mae: 0.4222
Epoch 44/300
404/404 [==============================] - 0s 81us/step - loss: 0.3557 - mae: 0.4221
Epoch 45/300
404/404 [==============================] - 0s 102us/step - loss: 0.3550 - mae: 0.4213
Epoch 46/300
404/404 [==============================] - 0s 68us/step - loss: 0.3542 - mae: 0.4202
Epoch 47/300
404/404 [==============================] - 0s 87us/step - loss: 0.3537 - mae: 0.4191
Epoch 48/300
404/404 [==============================] - 0s 64us/step - loss: 0.3553 - mae: 0.4193
Epoch 49/300
404/404 [==============================] - 0s 88us/step - loss: 0.3517 - mae: 0.4171
Epoch 50/300
404/404 [==============================] - 0s 79us/step - loss: 0.3523 - mae: 0.4172
Epoch 51/300
404/404 [==============================] - 0s 135us/step - loss: 0.3520 - mae: 0.4165
Epoch 52/300
404/404 [==============================] - 0s 90us/step - loss: 0.3510 - mae: 0.4154
Epoch 53/300
404/404 [==============================] - 0s 110us/step - loss: 0.3504 - mae: 0.4173
Epoch 54/300
404/404 [==============================] - 0s 112us/step - loss: 0.3501 - mae: 0.4145
Epoch 55/300
404/404 [==============================] - 0s 80us/step - loss: 0.3499 - mae: 0.4164
Epoch 56/300
404/404 [==============================] - 0s 230us/step - loss: 0.3492 - mae: 0.4129
Epoch 57/300
404/404 [==============================] - 0s 132us/step - loss: 0.3492 - mae: 0.4134
Epoch 58/300
404/404 [==============================] - 0s 102us/step - loss: 0.3508 - mae: 0.4135
Epoch 59/300
404/404 [==============================] - 0s 133us/step - loss: 0.3481 - mae: 0.4149
Epoch 60/300
404/404 [==============================] - 0s 50us/step - loss: 0.3488 - mae: 0.4151
Epoch 61/300
404/404 [==============================] - 0s 112us/step - loss: 0.3481 - mae: 0.4116
Epoch 62/300
404/404 [==============================] - 0s 286us/step - loss: 0.3477 - mae: 0.4123
Epoch 63/300
404/404 [==============================] - 0s 258us/step - loss: 0.3475 - mae: 0.4117
Epoch 64/300
404/404 [==============================] - 0s 227us/step - loss: 0.3470 - mae: 0.4110
Epoch 65/300
404/404 [==============================] - 0s 177us/step - loss: 0.3483 - mae: 0.4113
Epoch 66/300
404/404 [==============================] - 0s 170us/step - loss: 0.3472 - mae: 0.4116
Epoch 67/300
404/404 [==============================] - 0s 130us/step - loss: 0.3467 - mae: 0.4084
Epoch 68/300
404/404 [==============================] - 0s 209us/step - loss: 0.3467 - mae: 0.4108
Epoch 69/300
404/404 [==============================] - 0s 140us/step - loss: 0.3460 - mae: 0.4086
Epoch 70/300
404/404 [==============================] - 0s 196us/step - loss: 0.3459 - mae: 0.4100
Epoch 71/300
404/404 [==============================] - 0s 170us/step - loss: 0.3458 - mae: 0.4077
Epoch 72/300
404/404 [==============================] - 0s 182us/step - loss: 0.3467 - mae: 0.4111
Epoch 73/300
404/404 [==============================] - 0s 162us/step - loss: 0.3455 - mae: 0.4075
Epoch 74/300
404/404 [==============================] - 0s 223us/step - loss: 0.3456 - mae: 0.4085
Epoch 75/300
404/404 [==============================] - 0s 157us/step - loss: 0.3462 - mae: 0.4107
Epoch 76/300
404/404 [==============================] - 0s 120us/step - loss: 0.3450 - mae: 0.4069
Epoch 77/300
404/404 [==============================] - 0s 170us/step - loss: 0.3460 - mae: 0.4106
Epoch 78/300
404/404 [==============================] - 0s 149us/step - loss: 0.3452 - mae: 0.4070
Epoch 79/300
404/404 [==============================] - 0s 126us/step - loss: 0.3452 - mae: 0.4065
Epoch 80/300
404/404 [==============================] - 0s 85us/step - loss: 0.3451 - mae: 0.4104
Epoch 81/300
404/404 [==============================] - 0s 164us/step - loss: 0.3454 - mae: 0.4087
Epoch 82/300
404/404 [==============================] - 0s 113us/step - loss: 0.3453 - mae: 0.4077
Epoch 83/300
404/404 [==============================] - 0s 158us/step - loss: 0.3447 - mae: 0.4053
Epoch 84/300
404/404 [==============================] - 0s 155us/step - loss: 0.3443 - mae: 0.4057
Epoch 85/300
404/404 [==============================] - 0s 160us/step - loss: 0.3442 - mae: 0.4076
Epoch 86/300
404/404 [==============================] - 0s 221us/step - loss: 0.3451 - mae: 0.4076
Epoch 87/300
404/404 [==============================] - 0s 343us/step - loss: 0.3463 - mae: 0.4114
Epoch 88/300
404/404 [==============================] - 0s 218us/step - loss: 0.3442 - mae: 0.4031
Epoch 89/300
404/404 [==============================] - 0s 130us/step - loss: 0.3446 - mae: 0.4074
Epoch 90/300
404/404 [==============================] - 0s 210us/step - loss: 0.3449 - mae: 0.4073
Epoch 91/300
404/404 [==============================] - 0s 101us/step - loss: 0.3454 - mae: 0.4082
Epoch 92/300
404/404 [==============================] - 0s 187us/step - loss: 0.3435 - mae: 0.4025
Epoch 93/300
404/404 [==============================] - 0s 148us/step - loss: 0.3445 - mae: 0.4082
Epoch 94/300
404/404 [==============================] - 0s 155us/step - loss: 0.3430 - mae: 0.4022
Epoch 95/300
404/404 [==============================] - 0s 158us/step - loss: 0.3454 - mae: 0.4084
Epoch 96/300
404/404 [==============================] - 0s 191us/step - loss: 0.3449 - mae: 0.4074
Epoch 97/300
404/404 [==============================] - 0s 224us/step - loss: 0.3438 - mae: 0.4032
Epoch 98/300
404/404 [==============================] - 0s 122us/step - loss: 0.3455 - mae: 0.4057
Epoch 99/300
404/404 [==============================] - 0s 248us/step - loss: 0.3446 - mae: 0.4051
Epoch 100/300
404/404 [==============================] - 0s 223us/step - loss: 0.3438 - mae: 0.4053
Epoch 101/300
404/404 [==============================] - 0s 225us/step - loss: 0.3447 - mae: 0.4060
Epoch 102/300
404/404 [==============================] - 0s 255us/step - loss: 0.3439 - mae: 0.4032
Epoch 103/300
404/404 [==============================] - 0s 169us/step - loss: 0.3446 - mae: 0.4084
Epoch 104/300
404/404 [==============================] - 0s 196us/step - loss: 0.3450 - mae: 0.4062
Epoch 105/300
404/404 [==============================] - 0s 153us/step - loss: 0.3440 - mae: 0.4034
Epoch 106/300
404/404 [==============================] - 0s 64us/step - loss: 0.3442 - mae: 0.4056
Epoch 107/300
404/404 [==============================] - 0s 179us/step - loss: 0.3451 - mae: 0.4082
Epoch 108/300
404/404 [==============================] - 0s 163us/step - loss: 0.3438 - mae: 0.4055
Epoch 109/300
404/404 [==============================] - 0s 120us/step - loss: 0.3441 - mae: 0.4057
Epoch 110/300
404/404 [==============================] - 0s 221us/step - loss: 0.3448 - mae: 0.4066
Epoch 111/300
404/404 [==============================] - 0s 106us/step - loss: 0.3435 - mae: 0.4037
Epoch 112/300
404/404 [==============================] - 0s 103us/step - loss: 0.3428 - mae: 0.4026
Epoch 113/300
404/404 [==============================] - 0s 107us/step - loss: 0.3455 - mae: 0.4093
Epoch 114/300
404/404 [==============================] - 0s 204us/step - loss: 0.3444 - mae: 0.4060
Epoch 115/300
404/404 [==============================] - 0s 266us/step - loss: 0.3445 - mae: 0.4035
Epoch 116/300
404/404 [==============================] - 0s 223us/step - loss: 0.3436 - mae: 0.4035
Epoch 117/300
404/404 [==============================] - 0s 142us/step - loss: 0.3432 - mae: 0.4039
Epoch 118/300
404/404 [==============================] - 0s 277us/step - loss: 0.3447 - mae: 0.4073
Epoch 119/300
404/404 [==============================] - 0s 257us/step - loss: 0.3440 - mae: 0.4047
Epoch 120/300
404/404 [==============================] - 0s 203us/step - loss: 0.3432 - mae: 0.4035
Epoch 121/300
404/404 [==============================] - 0s 261us/step - loss: 0.3449 - mae: 0.4056
Epoch 122/300
404/404 [==============================] - 0s 161us/step - loss: 0.3430 - mae: 0.4031
Epoch 123/300
404/404 [==============================] - 0s 206us/step - loss: 0.3442 - mae: 0.4038
Epoch 124/300
404/404 [==============================] - 0s 151us/step - loss: 0.3433 - mae: 0.4024
Epoch 125/300
404/404 [==============================] - 0s 142us/step - loss: 0.3434 - mae: 0.4043
Epoch 126/300
404/404 [==============================] - 0s 116us/step - loss: 0.3438 - mae: 0.4036
Epoch 127/300
404/404 [==============================] - 0s 103us/step - loss: 0.3439 - mae: 0.4013
Epoch 128/300
404/404 [==============================] - 0s 218us/step - loss: 0.3440 - mae: 0.4071
Epoch 129/300
404/404 [==============================] - 0s 180us/step - loss: 0.3432 - mae: 0.4007
Epoch 130/300
404/404 [==============================] - 0s 122us/step - loss: 0.3442 - mae: 0.4040
Epoch 131/300
404/404 [==============================] - 0s 95us/step - loss: 0.3439 - mae: 0.4056
Epoch 132/300
404/404 [==============================] - 0s 91us/step - loss: 0.3439 - mae: 0.4049
Epoch 133/300
404/404 [==============================] - 0s 175us/step - loss: 0.3423 - mae: 0.3999
Epoch 134/300
404/404 [==============================] - 0s 125us/step - loss: 0.3445 - mae: 0.4068
Epoch 135/300
404/404 [==============================] - 0s 311us/step - loss: 0.3428 - mae: 0.4003
Epoch 136/300
404/404 [==============================] - 0s 177us/step - loss: 0.3446 - mae: 0.4046
Epoch 137/300
404/404 [==============================] - 0s 99us/step - loss: 0.3432 - mae: 0.4024
Epoch 138/300
404/404 [==============================] - 0s 74us/step - loss: 0.3443 - mae: 0.4050
Epoch 139/300
404/404 [==============================] - 0s 94us/step - loss: 0.3430 - mae: 0.4019
Epoch 140/300
404/404 [==============================] - 0s 123us/step - loss: 0.3442 - mae: 0.4045
Epoch 141/300
404/404 [==============================] - 0s 265us/step - loss: 0.3440 - mae: 0.4024
Epoch 142/300
404/404 [==============================] - 0s 246us/step - loss: 0.3428 - mae: 0.4014
Epoch 143/300
404/404 [==============================] - 0s 109us/step - loss: 0.3430 - mae: 0.4018
Epoch 144/300
404/404 [==============================] - 0s 129us/step - loss: 0.3444 - mae: 0.4061
Epoch 145/300
404/404 [==============================] - 0s 92us/step - loss: 0.3428 - mae: 0.4011
Epoch 146/300
404/404 [==============================] - 0s 80us/step - loss: 0.3426 - mae: 0.4000
Epoch 147/300
404/404 [==============================] - 0s 100us/step - loss: 0.3429 - mae: 0.4000
Epoch 148/300
404/404 [==============================] - 0s 119us/step - loss: 0.3445 - mae: 0.4033
Epoch 149/300
404/404 [==============================] - 0s 64us/step - loss: 0.3432 - mae: 0.4045
Epoch 150/300
404/404 [==============================] - 0s 83us/step - loss: 0.3430 - mae: 0.4018
Epoch 151/300
404/404 [==============================] - 0s 89us/step - loss: 0.3434 - mae: 0.4027
Epoch 152/300
404/404 [==============================] - 0s 88us/step - loss: 0.3433 - mae: 0.4020
Epoch 153/300
404/404 [==============================] - 0s 68us/step - loss: 0.3426 - mae: 0.3991
Epoch 154/300
404/404 [==============================] - 0s 93us/step - loss: 0.3437 - mae: 0.4046
Epoch 155/300
404/404 [==============================] - 0s 88us/step - loss: 0.3433 - mae: 0.4027
Epoch 156/300
404/404 [==============================] - 0s 219us/step - loss: 0.3433 - mae: 0.4023
Epoch 157/300
404/404 [==============================] - 0s 104us/step - loss: 0.3429 - mae: 0.4012
Epoch 158/300
404/404 [==============================] - 0s 117us/step - loss: 0.3438 - mae: 0.4029
Epoch 159/300
404/404 [==============================] - 0s 126us/step - loss: 0.3431 - mae: 0.4024
Epoch 160/300
404/404 [==============================] - 0s 89us/step - loss: 0.3436 - mae: 0.4018
Epoch 161/300
404/404 [==============================] - 0s 100us/step - loss: 0.3440 - mae: 0.4044
Epoch 162/300
404/404 [==============================] - 0s 181us/step - loss: 0.3428 - mae: 0.4013
Epoch 163/300
404/404 [==============================] - 0s 72us/step - loss: 0.3435 - mae: 0.4031
Epoch 164/300
404/404 [==============================] - 0s 76us/step - loss: 0.3426 - mae: 0.4001
Epoch 165/300
404/404 [==============================] - 0s 108us/step - loss: 0.3443 - mae: 0.4018
Epoch 166/300
404/404 [==============================] - 0s 77us/step - loss: 0.3425 - mae: 0.3993
Epoch 167/300
404/404 [==============================] - 0s 116us/step - loss: 0.3445 - mae: 0.4065
Epoch 168/300
404/404 [==============================] - 0s 109us/step - loss: 0.3427 - mae: 0.4014
Epoch 169/300
404/404 [==============================] - 0s 164us/step - loss: 0.3427 - mae: 0.3975
Epoch 170/300
404/404 [==============================] - 0s 208us/step - loss: 0.3428 - mae: 0.4019
Epoch 171/300
404/404 [==============================] - 0s 194us/step - loss: 0.3428 - mae: 0.4018
Epoch 172/300
404/404 [==============================] - 0s 122us/step - loss: 0.3434 - mae: 0.4012
Epoch 173/300
404/404 [==============================] - 0s 221us/step - loss: 0.3425 - mae: 0.4002
Epoch 174/300
404/404 [==============================] - 0s 98us/step - loss: 0.3443 - mae: 0.4053
Epoch 175/300
404/404 [==============================] - 0s 153us/step - loss: 0.3430 - mae: 0.3996
Epoch 176/300
404/404 [==============================] - 0s 106us/step - loss: 0.3435 - mae: 0.4020
Epoch 177/300
404/404 [==============================] - 0s 83us/step - loss: 0.3433 - mae: 0.4021
Epoch 178/300
404/404 [==============================] - 0s 158us/step - loss: 0.3434 - mae: 0.4018
Epoch 179/300
404/404 [==============================] - 0s 168us/step - loss: 0.3427 - mae: 0.4021
Epoch 180/300
404/404 [==============================] - 0s 189us/step - loss: 0.3435 - mae: 0.4024
Epoch 181/300
404/404 [==============================] - 0s 127us/step - loss: 0.3433 - mae: 0.4019
Epoch 182/300
404/404 [==============================] - 0s 180us/step - loss: 0.3431 - mae: 0.4014
Epoch 183/300
404/404 [==============================] - 0s 179us/step - loss: 0.3429 - mae: 0.3998
Epoch 184/300
404/404 [==============================] - 0s 62us/step - loss: 0.3430 - mae: 0.4006
Epoch 185/300
404/404 [==============================] - 0s 147us/step - loss: 0.3430 - mae: 0.4003
Epoch 186/300
404/404 [==============================] - 0s 86us/step - loss: 0.3428 - mae: 0.3997
Epoch 187/300
404/404 [==============================] - 0s 88us/step - loss: 0.3426 - mae: 0.3995
Epoch 188/300
404/404 [==============================] - 0s 185us/step - loss: 0.3436 - mae: 0.4005
Epoch 189/300
404/404 [==============================] - 0s 178us/step - loss: 0.3431 - mae: 0.4019
Epoch 190/300
404/404 [==============================] - 0s 108us/step - loss: 0.3419 - mae: 0.3982
Epoch 191/300
404/404 [==============================] - 0s 111us/step - loss: 0.3436 - mae: 0.4059
Epoch 192/300
404/404 [==============================] - 0s 117us/step - loss: 0.3431 - mae: 0.4012
Epoch 193/300
404/404 [==============================] - 0s 224us/step - loss: 0.3424 - mae: 0.3980
Epoch 194/300
404/404 [==============================] - 0s 117us/step - loss: 0.3430 - mae: 0.4022
Epoch 195/300
404/404 [==============================] - 0s 213us/step - loss: 0.3441 - mae: 0.4024
Epoch 196/300
404/404 [==============================] - 0s 135us/step - loss: 0.3419 - mae: 0.3966
Epoch 197/300
404/404 [==============================] - 0s 82us/step - loss: 0.3434 - mae: 0.4033
Epoch 198/300
404/404 [==============================] - 0s 129us/step - loss: 0.3423 - mae: 0.4000
Epoch 199/300
404/404 [==============================] - 0s 180us/step - loss: 0.3441 - mae: 0.4050
Epoch 200/300
404/404 [==============================] - 0s 88us/step - loss: 0.3428 - mae: 0.4001
Epoch 201/300
404/404 [==============================] - 0s 176us/step - loss: 0.3427 - mae: 0.4009
Epoch 202/300
404/404 [==============================] - 0s 103us/step - loss: 0.3422 - mae: 0.3985
Epoch 203/300
404/404 [==============================] - 0s 219us/step - loss: 0.3429 - mae: 0.4008
Epoch 204/300
404/404 [==============================] - 0s 82us/step - loss: 0.3419 - mae: 0.3975
Epoch 205/300
404/404 [==============================] - 0s 62us/step - loss: 0.3439 - mae: 0.4042
Epoch 206/300
404/404 [==============================] - 0s 117us/step - loss: 0.3418 - mae: 0.3973
Epoch 207/300
404/404 [==============================] - 0s 91us/step - loss: 0.3432 - mae: 0.4021
Epoch 208/300
404/404 [==============================] - 0s 60us/step - loss: 0.3436 - mae: 0.4039
Epoch 209/300
404/404 [==============================] - 0s 170us/step - loss: 0.3423 - mae: 0.3976
Epoch 210/300
404/404 [==============================] - 0s 84us/step - loss: 0.3429 - mae: 0.4025
Epoch 211/300
404/404 [==============================] - 0s 105us/step - loss: 0.3425 - mae: 0.4000
Epoch 212/300
404/404 [==============================] - 0s 88us/step - loss: 0.3429 - mae: 0.3990
Epoch 213/300
404/404 [==============================] - 0s 78us/step - loss: 0.3419 - mae: 0.3979
Epoch 214/300
404/404 [==============================] - 0s 107us/step - loss: 0.3431 - mae: 0.4028
Epoch 215/300
404/404 [==============================] - 0s 81us/step - loss: 0.3430 - mae: 0.3996
Epoch 216/300
404/404 [==============================] - 0s 88us/step - loss: 0.3425 - mae: 0.3988
Epoch 217/300
404/404 [==============================] - 0s 67us/step - loss: 0.3420 - mae: 0.3992
Epoch 218/300
404/404 [==============================] - 0s 87us/step - loss: 0.3425 - mae: 0.4016
Epoch 219/300
404/404 [==============================] - 0s 79us/step - loss: 0.3436 - mae: 0.4004
Epoch 220/300
404/404 [==============================] - 0s 123us/step - loss: 0.3418 - mae: 0.3983
Epoch 221/300
404/404 [==============================] - 0s 125us/step - loss: 0.3442 - mae: 0.4021
Epoch 222/300
404/404 [==============================] - 0s 62us/step - loss: 0.3423 - mae: 0.4005
Epoch 223/300
404/404 [==============================] - 0s 82us/step - loss: 0.3415 - mae: 0.3970
Epoch 224/300
404/404 [==============================] - 0s 78us/step - loss: 0.3432 - mae: 0.4030
Epoch 225/300
404/404 [==============================] - 0s 98us/step - loss: 0.3430 - mae: 0.4006
Epoch 226/300
404/404 [==============================] - 0s 111us/step - loss: 0.3429 - mae: 0.4007
Epoch 227/300
404/404 [==============================] - 0s 120us/step - loss: 0.3424 - mae: 0.4007
Epoch 228/300
404/404 [==============================] - 0s 72us/step - loss: 0.3426 - mae: 0.3984
Epoch 229/300
404/404 [==============================] - 0s 117us/step - loss: 0.3419 - mae: 0.3979
Epoch 230/300
404/404 [==============================] - 0s 98us/step - loss: 0.3436 - mae: 0.4034
Epoch 231/300
404/404 [==============================] - 0s 63us/step - loss: 0.3422 - mae: 0.3994
Epoch 232/300
404/404 [==============================] - 0s 107us/step - loss: 0.3430 - mae: 0.4020
Epoch 233/300
404/404 [==============================] - 0s 188us/step - loss: 0.3425 - mae: 0.3997
Epoch 234/300
404/404 [==============================] - 0s 100us/step - loss: 0.3426 - mae: 0.4005
Epoch 235/300
404/404 [==============================] - 0s 117us/step - loss: 0.3426 - mae: 0.3995
Epoch 236/300
404/404 [==============================] - 0s 175us/step - loss: 0.3421 - mae: 0.3980
Epoch 237/300
404/404 [==============================] - 0s 104us/step - loss: 0.3425 - mae: 0.4006
Epoch 238/300
404/404 [==============================] - 0s 71us/step - loss: 0.3423 - mae: 0.3982
Epoch 239/300
404/404 [==============================] - 0s 51us/step - loss: 0.3419 - mae: 0.4000
Epoch 240/300
404/404 [==============================] - 0s 74us/step - loss: 0.3440 - mae: 0.4016
Epoch 241/300
404/404 [==============================] - 0s 82us/step - loss: 0.3418 - mae: 0.3980
Epoch 242/300
404/404 [==============================] - 0s 122us/step - loss: 0.3416 - mae: 0.3971
Epoch 243/300
404/404 [==============================] - 0s 156us/step - loss: 0.3424 - mae: 0.3987
Epoch 244/300
404/404 [==============================] - 0s 58us/step - loss: 0.3424 - mae: 0.4002
Epoch 245/300
404/404 [==============================] - 0s 75us/step - loss: 0.3412 - mae: 0.3954
Epoch 246/300
404/404 [==============================] - 0s 80us/step - loss: 0.3421 - mae: 0.3997
Epoch 247/300
404/404 [==============================] - 0s 124us/step - loss: 0.3434 - mae: 0.4032
Epoch 248/300
404/404 [==============================] - 0s 109us/step - loss: 0.3424 - mae: 0.3991
Epoch 249/300
404/404 [==============================] - 0s 90us/step - loss: 0.3412 - mae: 0.3958
Epoch 250/300
404/404 [==============================] - 0s 77us/step - loss: 0.3427 - mae: 0.3999
Epoch 251/300
404/404 [==============================] - 0s 70us/step - loss: 0.3426 - mae: 0.4001
Epoch 252/300
404/404 [==============================] - 0s 80us/step - loss: 0.3418 - mae: 0.3980
Epoch 253/300
404/404 [==============================] - 0s 82us/step - loss: 0.3417 - mae: 0.3987
Epoch 254/300
404/404 [==============================] - 0s 207us/step - loss: 0.3431 - mae: 0.4014
Epoch 255/300
404/404 [==============================] - 0s 132us/step - loss: 0.3422 - mae: 0.3978
Epoch 256/300
404/404 [==============================] - 0s 128us/step - loss: 0.3416 - mae: 0.3966
Epoch 257/300
404/404 [==============================] - 0s 192us/step - loss: 0.3424 - mae: 0.3968
Epoch 258/300
404/404 [==============================] - 0s 99us/step - loss: 0.3418 - mae: 0.3971
Epoch 259/300
404/404 [==============================] - 0s 93us/step - loss: 0.3423 - mae: 0.3977
Epoch 260/300
404/404 [==============================] - 0s 84us/step - loss: 0.3422 - mae: 0.3994
Epoch 261/300
404/404 [==============================] - 0s 195us/step - loss: 0.3419 - mae: 0.3976
Epoch 262/300
404/404 [==============================] - 0s 121us/step - loss: 0.3413 - mae: 0.3943
Epoch 263/300
404/404 [==============================] - 0s 107us/step - loss: 0.3432 - mae: 0.4019
Epoch 264/300
404/404 [==============================] - 0s 56us/step - loss: 0.3414 - mae: 0.3955
Epoch 265/300
404/404 [==============================] - 0s 62us/step - loss: 0.3429 - mae: 0.3983
Epoch 266/300
404/404 [==============================] - 0s 87us/step - loss: 0.3422 - mae: 0.3986
Epoch 267/300
404/404 [==============================] - 0s 212us/step - loss: 0.3414 - mae: 0.3953
Epoch 268/300
404/404 [==============================] - 0s 176us/step - loss: 0.3423 - mae: 0.3989
Epoch 269/300
404/404 [==============================] - 0s 97us/step - loss: 0.3426 - mae: 0.3987
Epoch 270/300
404/404 [==============================] - 0s 175us/step - loss: 0.3409 - mae: 0.3932
Epoch 271/300
404/404 [==============================] - 0s 78us/step - loss: 0.3427 - mae: 0.4008
Epoch 272/300
404/404 [==============================] - 0s 74us/step - loss: 0.3423 - mae: 0.3999
Epoch 273/300
404/404 [==============================] - 0s 72us/step - loss: 0.3413 - mae: 0.3934
Epoch 274/300
404/404 [==============================] - 0s 111us/step - loss: 0.3429 - mae: 0.4001
Epoch 275/300
404/404 [==============================] - 0s 99us/step - loss: 0.3418 - mae: 0.3981
Epoch 276/300
404/404 [==============================] - 0s 138us/step - loss: 0.3424 - mae: 0.3986
Epoch 277/300
404/404 [==============================] - 0s 92us/step - loss: 0.3420 - mae: 0.3996
Epoch 278/300
404/404 [==============================] - 0s 99us/step - loss: 0.3430 - mae: 0.3979
Epoch 279/300
404/404 [==============================] - 0s 82us/step - loss: 0.3419 - mae: 0.3960
Epoch 280/300
404/404 [==============================] - 0s 96us/step - loss: 0.3416 - mae: 0.3967
Epoch 281/300
404/404 [==============================] - 0s 79us/step - loss: 0.3425 - mae: 0.3987
Epoch 282/300
404/404 [==============================] - 0s 89us/step - loss: 0.3420 - mae: 0.3963
Epoch 283/300
404/404 [==============================] - 0s 65us/step - loss: 0.3412 - mae: 0.3942
Epoch 284/300
404/404 [==============================] - 0s 78us/step - loss: 0.3416 - mae: 0.3955
Epoch 285/300
404/404 [==============================] - 0s 84us/step - loss: 0.3421 - mae: 0.3962
Epoch 286/300
404/404 [==============================] - 0s 88us/step - loss: 0.3418 - mae: 0.3975
Epoch 287/300
404/404 [==============================] - 0s 64us/step - loss: 0.3411 - mae: 0.3958
Epoch 288/300
404/404 [==============================] - 0s 105us/step - loss: 0.3429 - mae: 0.3992
Epoch 289/300
404/404 [==============================] - 0s 93us/step - loss: 0.3419 - mae: 0.3973
Epoch 290/300
404/404 [==============================] - 0s 129us/step - loss: 0.3409 - mae: 0.3931
Epoch 291/300
404/404 [==============================] - 0s 87us/step - loss: 0.3419 - mae: 0.3976
Epoch 292/300
404/404 [==============================] - 0s 128us/step - loss: 0.3416 - mae: 0.3982
Epoch 293/300
404/404 [==============================] - 0s 99us/step - loss: 0.3417 - mae: 0.3967
Epoch 294/300
404/404 [==============================] - 0s 93us/step - loss: 0.3413 - mae: 0.3946
Epoch 295/300
404/404 [==============================] - 0s 157us/step - loss: 0.3419 - mae: 0.3972
Epoch 296/300
404/404 [==============================] - 0s 113us/step - loss: 0.3426 - mae: 0.3958
Epoch 297/300
404/404 [==============================] - 0s 69us/step - loss: 0.3412 - mae: 0.3954
Epoch 298/300
404/404 [==============================] - 0s 75us/step - loss: 0.3419 - mae: 0.3972
Epoch 299/300
404/404 [==============================] - 0s 44us/step - loss: 0.3406 - mae: 0.3922
Epoch 300/300
404/404 [==============================] - 0s 54us/step - loss: 0.3423 - mae: 0.4000
102/102 [==============================] - 0s 309us/step
score: [0.44682052264026567, 0.4667647182941437]
r2 score: 0.45171405496274775


本段代码是一个基于Keras构建神经网络回归模型的示例。该模型使用了Sequential模型,依次添加了三个Dense层,激活函数分别为ReLU和线性函数。其中第一层的输入维度使用了lb.data.shape[1]来获取数据的特征数,以此来指定了输入数据的形状。


在模型的编译过程中,使用了rmsprop优化器,损失函数为MSE,评估指标为MAE。训练过程中使用了X_train和y_train训练集,并设置了epochs为300,batch_size为16,shuffle为False。最后通过evaluate方法计算了模型在测试集上的得分,并使用r2_score计算了模型的R2指标。


此外,这段代码还使用了数据标准化的预处理方法,使得数据的分布更加符合标准正态分布,有助于提高模型的准确性。


总的来说,这段代码是一个简单但完整的神经网络模型,可以用于解决回归问题并作为其他问题的基础模型进行修改和调试。同时,使用Keras编写神经网络模型也相对容易上手,方便大家进行学习和实践。


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
相关文章
|
机器学习/深度学习 自然语言处理 PyTorch
【深度学习】实验12 使用PyTorch训练模型
【深度学习】实验12 使用PyTorch训练模型
166 0
|
3月前
|
机器学习/深度学习 监控 数据可视化
深度学习中实验、观察与思考的方法与技巧
在深度学习中,实验、观察与思考是理解和改进模型性能的关键环节。
65 5
|
3月前
|
机器学习/深度学习 数据挖掘 知识图谱
深度学习之材料科学中的自动化实验设计
基于深度学习的材料科学中的自动化实验设计是一个新兴领域,旨在通过机器学习模型,尤其是深度学习模型,来优化和自动化材料实验的设计流程。
62 1
|
5月前
|
机器学习/深度学习 算法 前端开发
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
使用Numpy实现梯度下降算法来构建和训练线性模型进行波士顿房价预测的过程,并提供了模型保存的方法,同时提出了几个关于梯度计算、参数更新和神经网络训练的作业题目。
 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
|
5月前
|
机器学习/深度学习 算法 数据处理
《零基础实践深度学习》波士顿房价预测任务1.3.3.4训练过程
这篇文章详细阐述了如何使用线性回归对波士顿房价进行预测,包括构建神经网络模型、数据处理、模型设计、训练过程、梯度下降法以及随机梯度下降法(SGD)的应用,并提供了完整的Python代码实现。
|
5月前
|
机器学习/深度学习 算法 程序员
《零基础实践深度学习》波士顿房价预测任务 02
这篇文章通过"波士顿房价预测"任务,介绍了使用Python和Numpy构建神经网络模型的基本思路和操作,首先以线性回归模型为例,解释了神经网络中损失函数的选择和模型的构建过程。
|
5月前
|
机器学习/深度学习 存储 算法框架/工具
【深度学习】猫狗识别TensorFlow2实验报告
本文介绍了使用TensorFlow 2进行猫狗识别的实验报告,包括实验目的、采用卷积神经网络(CNN)进行训练的过程,以及如何使用交叉熵作为损失函数来识别猫狗图像数据集。
208 1
|
5月前
|
机器学习/深度学习 算法 程序员
《零基础实践深度学习》使用飞桨重写波士顿房价预测任务
这篇文章通过使用飞桨(PaddlePaddle)框架重写波士顿房价预测任务,展示了飞桨的易用性和高效性,同时比较了基于Python原生编写模型与使用飞桨框架的异同,让读者体验到飞桨在简化深度学习模型开发方面的强大能力。
|
5月前
|
机器学习/深度学习 算法 测试技术
【深度学习】手写数字识别Tensorflow2实验报告
文章介绍了使用TensorFlow 2进行手写数字识别的实验报告,包括实验目的、采用全连接神经网络模型进行训练的过程、以及如何使用交叉熵作为损失函数来识别MNIST数据集的手写数字。
200 0
|
7月前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】