波士顿房价预测——机器学习入门级案例

简介: 机器学习入门的”Hello World“,学习机器学习的必备案例,通过这篇文章,我们将会讲解基于numpy的波士顿房价预测是怎样实现的。同时我也会在这篇文章中边讲基础边实现,有兴趣的小伙伴多多支持~

一、数据处理

1.1 数据集介绍

本实验使用波士顿房价预测数据集,共506条样本数据,每条样本包含了13种可能影响房价的因素和该类房屋价格的中位数,各字段含义如下表所示:

字段名 类型 含义
CRIM float 该镇的人均犯罪率
ZN float 占地面积超过25,000平方呎的住宅用地比例
INDUS float 非零售商业用地比例
CHAS int 是否邻近 Charles River 1=邻近;0=不邻近
NOX float 一氧化氮浓度
RM float 每栋房屋的平均客房数
AGE float 1940年之前建成的自用单位比例
DIS float 到波士顿5个就业中心的加权距离
RAD int 到径向公路的可达性指数
TAX int 全值财产税率
PTRATIO float 学生与教师的比例
B float 1000(BK-0.63)^2,其中BK是城镇中黑人的比例
LSTAT float 低收入人群占比
MEDV float 同类房屋价格的中位数

数据集下载地址:https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data

1.2 数据导入

(1)波士顿房价预测数据集存储在文本文件中的数据格式为下图所示:
在这里插入图片描述
其中的X就是数据集介绍中的CRIM-LSTAT部分,而Y就是MEDV,即同类房屋价格的中位数,也就是我们后面要预测的值。

(2)使用Numpy从文件导入数据np.fromfile

# 导入需要用到的package
import numpy as np
import json
# 读入训练数据
datafile = 'housing.data'
data = np.fromfile(datafile, sep=' ')

导入结果:
在这里插入图片描述
注释: np.tofile和np.fromfile可以实现数组写到磁盘文件中

print(data.shape)
# 输出(7084,)

我们可以发现,我们进行上述代码操作以后,将文件中的数据集生成了一个一维的数组,通过打印data.shape可以发现这个一维数组的长度为7084。
细心的朋友不难发现,7084不就是506 x 14以后的结果吗~

没错,在这时候我们就需要重新将data数据重新处理一下,用reshape()方法将其处理为(506, 14)的二维数组。

# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
feature_num = len(feature_names)

# 将原始数据进行reshape, 变为[N, 14]这样的形状
data = data.reshape([data.shape[0] // feature_num, feature_num])
print(data.shape)
# 输出(506, 14)

# 查看数据
X = data[0]
print(X.shape)
print(X)
# 输出
#(14,)
# [6.320e-03 1.800e+01 2.310e+00 0.000e+00 5.380e-01 6.575e+00 6.520e+01
# 4.090e+00 1.000e+00 2.960e+02 1.530e+01 3.969e+02 4.980e+00 2.400e+01]

由此可以看出每条数据是一个长度为14的一维数组,前13项是影响房价的因素,最后一项是房价。

1.3 数据集划分

在机器学习和深度学习过程中,往往要将数据集划分为训练集和测试集两部分,训练集用来进行训练,一般会取数据集的80%-90%,而测试集用来对训练好的模型性能进行评估,一般只取少量数据集,大概为10%左右。

ratio = 0.8
offset = int(data.shape[0] * ratio)
train_data = data[:offset]
test_data = data[offset:]
print(train_data.shape)
print(test_data.shape)
# 输出:
# (404, 14)
# (102, 14)

波士顿房价预测数据集中原有数据集为506行,经过划分以后,训练集为原来的80%,即404,测试集为原来的20%,即102。

1.4 归一化处理

对特征取值范围进行归一化,有两个好处

  • 特征训练更高效
  • 特征前的权重大小可代表该变量对预测结果的贡献度

注意:预测时,样本数据同样也需要归一化,以训练样本的均值和极值计算

# 计算train数据集的最大值、最小值和平均值
maxinums, mininums, avgs = data_slice.max(axis=0), data_slice.min(axis=0), data_slice.sum(axis=0) / data_slice.shape[0]

# 对数据进行归一化处理
for i in range(feature_num):
    # print(maxinums[i], mininums[i], avgs[i])
    data[:, i] = (data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])

1.5 将完整代码封装成load_data函数

def load_data():
    # 从文件导入数据
    datafile = 'housing.data'
    data = np.fromfile(datafile, sep=' ')
    print(data.shape)
    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行reshape, 变为[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])
    print(data.shape)
    X = data[0]
    print(X.shape)
    print(X)
    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    data_slice = data[:offset]

    # 计算train数据集的最大值、最小值和平均值
    maxinums, mininums, avgs = data_slice.max(axis=0), data_slice.min(axis=0), data_slice.sum(axis=0) / data_slice.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        # print(maxinums[i], mininums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])

    # 训练集和测试集的划分比例
    # ratio = 0.8
    train_data = data[:offset]
    test_data = data[offset:]

    return train_data, test_data

1.6 获取数据

# 获取数据
train_data, test_data = load_data()
print(train_data.shape)
x = train_data[:, :-1]
y = train_data[:, -1:]
print(x[0])
print(y[0])
#[-0.02146321  0.03767327 -0.28552309 -0.08663366  0.01289726  0.04634817
#  0.00795597 -0.00765794 -0.25172191 -0.11881188 -0.29002528  0.0519112
# -0.17590923]
#[-0.00390539]

二、设计模型

波士顿房价预测案例是一个非常典型的线性回归问题。

2.1 前向计算

输入x一共有13个变量,y只有1个变量,所以权重w的shape是[13, 1]

  • w可以任意赋初值如下
w = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, -0.1, -0.2, -0.3, -0.4, 0.0]
w = np.array(w).reshape([13, 1])
  • 取出第1条样本数据,观察它与w相乘之后的结果
x1 = X[0]
t = np.dot(x1, w)
print(t)
# 输出:[0.03395597]
  • 另外还需要初始化权重b,这里我们给它赋值-0.2观察输出
b = -0.2
z = t + b
print(z)
# 输出 [-0.16604403]

2.2 以类的方式实现网络结果(前向计算)

  1. 使用时可以生成多个模型示例
  2. 类成员变量有w和b,在类初始化函数时初始化变量(w随机初始化,b = 0)
  3. 函数成员forward 完成从输入特征x到输出z的计算过程(即前向计算
class NetWork(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b

        return z

随机选取一个样本测试下效果

net = NetWork(13)
x1 = x[0]
y1 = y[0]
z = net.forward(x1)
print(z)
# 输出 [-0.63182506]

此时我们可以看出,现阶段搭建的模型只有一个花架子,并不具备预测的能力,所以还需改进。

三、模型的损失与优化

3.1 模型好坏的衡量指标——损失函数(loss function)

在回归问题中均方误差是一种比较常见的形式,分类问题中通常会采用交叉熵损失函数,后续有机会再给大家讲解,咱们这篇文章主要讲解均方误差。
在这里插入图片描述

3.2 训练配置—同时计算多个样本的损失函数

在训练过程中,我们要计算所有样本的损失,而不是单个样本的损失。
在这里插入图片描述
在此过程中我们用到了Numpy的广播机制,便捷的实现多样本的计算
广播功能:像使用单一变量一样操作数组。

class NetWork(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b

        return z

    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)

        return cost

net = NetWork(13)
x1 = x[0:3]
y1 = y[0:3]
z = net.forward(x1)
print('predict', z)
loss = net.loss(z, y1)
print('loss', loss)

# 输出 
# predict [[-0.63182506]
# [-0.55793096]
# [-1.00062009]]
# loss 0.7229825055441156

在这里插入图片描述
方案1:
我们在高中的时候就学习过,当一条曲线处于极值点的时候,斜率为0,即导数为0。那么我们就可以根据上图中的导数方程来求解出参数w和b的值,以此来达到损失函数极小值的目的。但是由于并不是所有的函数都是像均方误差这样可逆的,在我们进行机器学习或者深度学习的过程中,遇见最多的就是不可逆函数,不可逆函数简单举个例子就是有一个y=x的方程,我们可以根据y求导解出x,但是却不能根据x求导解出y。也就是说不能反过来求解,这就是不可逆函数。
方案2:
在这里插入图片描述
在梯度下降法中,根据上图我们可以理解为什么我们使用均方误差而不是绝对误差,我们可以看到,绝对值误差画出来的图像没有坡度,是不可微的,而均方误差画出的Loss函数图像可以看出是可微的,这样子就可以让我们在求解过程中更加的方便。
在这里插入图片描述
沿着梯度的反方向可以理解为沿着切线方向下降速度最快的方向,一般切线方向都是向上的,而反方向就是向下的方向。

四、梯度下降代码实现

4.1 训练过程—计算梯度的公式推导

在这里插入图片描述
我们在进行梯度公式的推导之前,引入了1/2的因子,这样做的目的仅仅是为了我们的推导过程更加的简洁,没有别的目的,而且这样做并不影响我们整体的推导过程。

4.1.1 训练过程—计算梯度的公式推导(一个样本)

在这里插入图片描述在这里插入图片描述

4.1.2 训练过程—基于Numpy广播机制进行梯度计算(多个样本)

  • 基于Numpy的广播机制,扩展参数的维度

在这里插入图片描述

4.1.3 训练过程—基于Numpy计算单个样本—>多个样本对梯度的贡献

  • 同样,基于Nupy的广播机制,扩展样本的维度

在这里插入图片描述

4.1.4 训练过程—计算所有样本对梯度的贡献,代码十分简洁

在这里插入图片描述

4.4.5 训练过程—所有样本对梯度的贡献取平均值

  • 参数的更新方向要考虑所有样本的“意见”,总的梯度是所有样本对梯度贡献的平均值

在这里插入图片描述

  • 使用Numpy里面的矩阵操作来完成此过程:


因为后续每走一小步都要进行维度的相加,所以(13, )要加上1维,变成(13,1),使得到梯度的维度和参数的维度一致,但是加上的1维相当于是虚的,因为13 x 1与13是一样的数字。

4.2 前向计算和后向传播的完整代码

  • 全流程的步骤
    1.前向计算
    2.拿到1(前向计算的结果),才能计算损失
    3.拿到1和2,才能计算梯度
    4.根据3,更新参数值

注意:其中第4步是反复循环进行的。

class NetWork(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b

        return z

    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)

        return cost

    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z - y) * x
        gradient_w = np.mean(gradient_w, axis=0)  # axis=0表示把每一行做相加然后再除以总的行数
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)
        # 此处b是一个数值,所以可以直接用np.mean得到一个标量(scalar)
        return gradient_w, gradient_b

    def update(self, gradient_w, gradient_b, eta=0.01):    # eta代表学习率,是控制每次参数值变动的大小,即移动步长,又称为学习率
        self.w = self.w - eta * gradient_w                 # 相减: 参数向梯度的反方向移动
        self.b = self.b - eta * gradient_b

    def train(self, x, y, iterations=1000, eta=0.01):
        losses = []
        for i in range(iterations):
            # 四步法
            z = self.forward(x)     # 前向计算
            L = self.loss(z, y)        # 求误差
            gradient_w, gradient_b = self.gradient(x, y)    # 求梯度
            self.update(gradient_w, gradient_b, eta)        # 更新参数
            losses.append(L)
            if (i + 1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses

五、完整代码

import numpy as np
from matplotlib import pyplot as plt


def load_data():
    # 从文件导入数据
    datafile = 'housing.data'
    data = np.fromfile(datafile, sep=' ')
    print(data.shape)
    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
    feature_num = len(feature_names)

    # 将原始数据进行reshape, 变为[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])
    print(data.shape)

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    data_slice = data[:offset]

    # 计算train数据集的最大值、最小值和平均值
    maxinums, mininums, avgs = data_slice.max(axis=0), data_slice.min(axis=0), data_slice.sum(axis=0) / data_slice.shape[0]

    # 对数据进行归一化处理
    for i in range(feature_num):
        # print(maxinums[i], mininums[i], avgs[i])
        data[:, i] = (data[:, i] - avgs[i]) / (maxinums[i] - mininums[i])

    # 训练集和测试集的划分比例
    # ratio = 0.8
    train_data = data[:offset]
    test_data = data[offset:]

    return train_data, test_data


class NetWork(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,此处设置了固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        self.b = 0

    def forward(self, x):
        z = np.dot(x, self.w) + self.b

        return z

    def loss(self, z, y):
        error = z - y
        cost = error * error
        cost = np.mean(cost)

        return cost

    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z - y) * x
        gradient_w = np.mean(gradient_w, axis=0)  # axis=0表示把每一行做相加然后再除以总的行数
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)
        # 此处b是一个数值,所以可以直接用np.mean得到一个标量(scalar)
        return gradient_w, gradient_b

    def update(self, gradient_w, gradient_b, eta=0.01):    # eta代表学习率,是控制每次参数值变动的大小,即移动步长,又称为学习率
        self.w = self.w - eta * gradient_w                 # 相减: 参数向梯度的反方向移动
        self.b = self.b - eta * gradient_b

    def train(self, x, y, iterations=1000, eta=0.01):
        losses = []
        for i in range(iterations):
            # 四步法
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            self.update(gradient_w, gradient_b, eta)
            losses.append(L)
            if (i + 1) % 10 == 0:
                print('iter {}, loss {}'.format(i, L))
        return losses




# 获取数据
train_data, test_data = load_data()
print(train_data.shape)
x = train_data[:, :-1]
y = train_data[:, -1:]

# 创建网络
net = NetWork(13)
num_iterations = 2000
# 启动训练
losses = net.train(x, y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()

训练结果:
在这里插入图片描述

相关文章
|
4天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
27 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
6月前
|
机器学习/深度学习 算法 数据挖掘
机器学习之sklearn基础——一个小案例,sklearn初体验
机器学习之sklearn基础——一个小案例,sklearn初体验
150 6
|
6月前
|
机器学习/深度学习 算法
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
|
7月前
|
Java Python 开发者
Python 学习之路 01基础入门---【Python安装,Python程序基本组成】
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
512 3
Python 学习之路 01基础入门---【Python安装,Python程序基本组成】
|
4月前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
83 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
3月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
7月前
|
Python
Python学习之路 02 之分支结构
Python学习之路 02 之分支结构
494 0
Python学习之路 02 之分支结构
|
7月前
|
Java
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
线程池详解与异步任务编排使用案例-xian-cheng-chi-xiang-jie-yu-yi-bu-ren-wu-bian-pai-shi-yong-an-li
88 0
|
4月前
|
机器学习/深度学习 存储 分布式计算
Hadoop与机器学习的融合:案例研究
【8月更文第28天】随着大数据技术的发展,Hadoop已经成为处理大规模数据集的重要工具。同时,机器学习作为一种数据分析方法,在各个领域都有着广泛的应用。本文将介绍如何利用Hadoop处理大规模数据集,并结合机器学习算法来挖掘有价值的信息。我们将通过一个具体的案例研究——基于用户行为数据预测用户留存率——来展开讨论。
330 0
|
6月前
|
机器学习/深度学习 数据可视化 算法
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归