【算法基础】一文掌握十大排序算法,冒泡排序、插入排序、选择排序、归并排序、计数排序、基数排序、希尔排序和堆排序

简介: 【算法基础】一文掌握十大排序算法,冒泡排序、插入排序、选择排序、归并排序、计数排序、基数排序、希尔排序和堆排序

1 冒泡排序(Bubble Sort)

      冒泡排序是一种基本的排序算法,其核心思想是多次遍历待排序的元素,比较相邻的两个元素,如果它们的顺序不正确,则交换它们,直到整个数组按照指定顺序排列。

def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        for j in range(0, n-i-1):
            # 比较相邻的两个元素
            if arr[j] > arr[j+1]:
                # 如果顺序不正确,则交换它们
                arr[j], arr[j+1] = arr[j+1], arr[j]
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
bubble_sort(arr)
print("冒泡排序后的数组:", arr)

       冒泡排序通过多次遍历数组,每次比较相邻的两个元素,如果它们的顺序不正确就交换它们。这个过程将最大的元素逐渐“冒泡”到数组的末尾。

       时间复杂度为 O(n^2),不适合大规模数据集。

2 插入排序(Insertion Sort)

       插入排序是一种稳定的排序算法,其核心思想是将未排序的元素逐个插入到已排序的部分,从前往后遍历,保持前面的元素有序。

def insertion_sort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            # 将较大的元素向右移动
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
insertion_sort(arr)
print("插入排序后的数组:", arr)

       插入排序逐个将未排序的元素插入到已排序的部分,从前往后遍历,保持前面的元素有序。时间复杂度为 O(n^2),适合小规模数据集和部分有序的数据。

3 选择排序(Selection Sort)

       选择排序是一种简单的不稳定排序算法,其核心思想是找到未排序部分的最小元素,将其与未排序部分的第一个元素交换位置。

def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_index = i
        for j in range(i+1, n):
            # 找到未排序部分的最小元素的索引
            if arr[j] < arr[min_index]:
                min_index = j
        # 交换最小元素与未排序部分的第一个元素
        arr[i], arr[min_index] = arr[min_index], arr[i]
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
selection_sort(arr)
print("选择排序后的数组:", arr)

     选择排序通过多次选择未排序部分的最小元素,并将其与未排序部分的第一个元素交换位置来进行排序。时间复杂度为 O(n^2),不适合大规模数据集。

4. 快速排序(Quick Sort)

       快速排序是一种高效的分治排序算法,它选择一个基准元素,将数组分成两部分,左边的元素都小于基准,右边的元素都大于基准,然后递归对左右两部分进行排序。

def quick_sort(arr):
    # 基本情况:如果数组为空或只包含一个元素,无需排序
    if len(arr) <= 1:
        return arr
    # 选择中间元素作为基准点(pivot)
    pivot = arr[len(arr) // 2]
    # 将数组分成三部分:小于、等于、大于基准点的元素
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    # 递归排序左右两部分,然后合并结果
    return quick_sort(left) + middle + quick_sort(right)
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
arr = quick_sort(arr)
print("快速排序后的数组:", arr)
  • 快速排序是一种高效的分治排序算法,它通过选择一个基准点(通常是数组中的中间元素)将数组分成左右两部分,并递归地对左右两部分进行排序。
  • 基本情况是数组为空或只包含一个元素,无需排序。
  • 针对每个元素,将它与基准点进行比较,分成小于、等于和大于基准点的三个子数组。
  • 然后,递归地对左右两部分进行排序,最后将它们与基准点合并,形成一个有序的数组。

5. 归并排序(Merge Sort)

       归并排序是一种稳定的分治排序算法,它将数组分成两半,分别排序,然后将已排序的两个子数组合并成一个有序数组。

def merge_sort(arr):
    # 基本情况:如果数组为空或只包含一个元素,无需排序
    if len(arr) <= 1:
        return arr
    # 将数组分成两半
    mid = len(arr) // 2
    left = arr[:mid]
    right = arr[mid:]
    # 递归地对左右两部分进行排序
    left = merge_sort(left)
    right = merge_sort(right)
    # 合并已排序的左右两部分
    return merge(left, right)
def merge(left, right):
    result = []
    i = j = 0
    # 合并两个已排序的子数组
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    # 如果左边或右边的子数组还有剩余元素,将它们添加到结果中
    result.extend(left[i:])
    result.extend(right[j:])
    return result
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
arr = merge_sort(arr)
print("归并排序后的数组:", arr)
  • 归并排序是一种稳定的分治排序算法,它将数组递归分成两半,然后合并已排序的子数组。
  • 基本情况是数组为空或只包含一个元素,无需排序。
  • 递归地对左右两部分进行排序,然后使用 merge 函数将它们合并成一个有序的数组。
  • merge 函数将两个已排序的子数组合并,同时维护它们的有序性。

6 堆排序 (Heap Sort)

       堆排序是一种不稳定的排序算法,它使用堆数据结构(通常是最大堆)来进行排序。堆排序分为两个主要步骤:建立堆和排序。

def heapify(arr, n, i):
    largest = i
    left = 2 * i + 1
    right = 2 * i + 2
    # 找到左子节点和右子节点中的最大值
    if left < n and arr[left] > arr[largest]:
        largest = left
    if right < n and arr[right] > arr[largest]:
        largest = right
    # 如果最大值不是当前节点,交换它们
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
def heap_sort(arr):
    n = len(arr)
    # 构建最大堆
    for i in range(n // 2 - 1, -1, -1):
        heapify(arr, n, i)
    # 一个接一个地从堆中取出元素,交换根节点与最后一个节点,然后重新构建堆
    for i in range(n - 1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]
        heapify(arr, i, 0)
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
heap_sort(arr)
print("堆排序后的数组:", arr)
  • 排序使用堆数据结构(通常是最大堆)来进行排序。首先构建最大堆,然后一个接一个地从堆中取出元素,交换根节点与最后一个节点,然后重新构建堆。
  • heapify 函数用于维护堆的性质,即父节点的值大于或等于子节点的值。
  • 这个算法的时间复杂度为 O(nlogn),是一种高效的排序算法。

7 计数排序 (Counting Sort)

       计数排序是一种非比较排序算法,它根据输入元素的计数来对元素进行排序。它适用于整数或有限范围内的非负整数。

def counting_sort(arr):
    max_val = max(arr)
    min_val = min(arr)
    range_of_elements = max_val - min_val + 1
    count_arr = [0] * range_of_elements
    output_arr = [0] * len(arr)
    # 计数每个元素的出现次数
    for num in arr:
        count_arr[num - min_val] += 1
    # 计算每个元素的累积计数
    for i in range(1, len(count_arr)):
        count_arr[i] += count_arr[i - 1]
    # 根据累积计数将元素放入输出数组
    for i in range(len(arr) - 1, -1, -1):
        output_arr[count_arr[arr[i] - min_val] - 1] = arr[i]
        count_arr[arr[i] - min_val] -= 1
    return output_arr
# 示例用法
arr = [4, 2, 2, 8, 3, 3, 1]
arr = counting_sort(arr)
print("计数排序后的数组:", arr)
  • 计数排序是一种非比较排序算法,适用于整数或有限范围内的非负整数。
  • 首先,计算每个元素的出现次数,然后计算每个元素的累积计数,最后根据累积计数将元素放入输出数组。
  • 这个算法的时间复杂度为 O(n+k),其中 k 是输入范围的大小。

8 基数排序 (Radix Sort)

       基数排序是一种非比较排序算法,它将数字按照每个位数进行排序,从最低位到最高位,依次排列。

def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n
    count = [0] * 10
    # 计数每个元素的出现次数
    for i in range(n):
        index = arr[i] // exp
        count[index % 10] += 1
    # 计算每个元素的累积计数
    for i in range(1, 10):
        count[i] += count[i - 1]
    # 根据累积计数将元素放入输出数组
    i = n - 1
    while i >= 0:
        index = arr[i] // exp
        output[count[index % 10] - 1] = arr[i]
        count[index % 10] -= 1
        i -= 1
    # 将输出数组的内容复制到原始数组中
    for i in range(n):
        arr[i] = output[i]
def radix_sort(arr):
    max_val = max(arr)
    exp = 1
    while max_val // exp > 0:
        counting_sort(arr, exp)
        exp *= 10
# 示例用法
arr = [170, 45, 75, 90, 802, 24, 2, 66]
radix_sort(arr)
print("基数排序后的数组:", arr)
  • 基数排序是一种非比较排序算法,它按照每个位数进行排序,从最低位到最高位,依次排列。
  • 首先使用计数排序对每个位数进行排序,然后再次对下一个位数进行排序,依次进行直到最高位。
  • 这个算法的时间复杂度为 O(nk),其中 k 是数字的最大位数。

9 希尔排序(Shell Sort)

       希尔排序(Shell Sort)是一种插入排序的改进版本,也被称为缩小增量排序。希尔排序通过将数组分成若干个子序列来排序数据,然后逐渐缩小子序列的间隔,最终得到一个完全排序的数组。希尔排序的主要思想是提前交换较远的元素,以加快排序过程。

算法原理

  1. 选择一个增量序列(间隔序列),通常选择的增量是数组长度的一半,然后逐渐减小增量。
  2. 对于每个增量,将数组分成若干个子序列,每个子序列使用插入排序进行排序。
  3. 重复步骤2,逐渐减小增量,直到增量为1。
  4. 当增量为1时,整个数组成为一个序列,使用插入排序对其进行排序。
def shell_sort(arr):
    n = len(arr)
    gap = n // 2  # 初始增量取数组长度的一半
    while gap > 0:
        for i in range(gap, n):
            temp = arr[i]
            j = i
            # 使用插入排序对子序列进行排序
            while j >= gap and arr[j - gap] > temp:
                arr[j] = arr[j - gap]
                j -= gap
            arr[j] = temp
        gap //= 2  # 缩小增量
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
shell_sort(arr)
print("希尔排序后的数组:", arr)

        希尔排序的关键在于选择合适的增量序列。常见的增量序列有希尔增量、Hibbard增量、Knuth增量等,不同的增量序列会影响排序的性能。

  • 希尔排序的时间复杂度取决于增量序列的选择,平均时间复杂度通常在 O(n^1.25) 到 O(n^2) 之间,比插入排序要快。
  • 希尔排序是一种不稳定排序算法,适用于中等大小的数据集。虽然不如快速排序和归并排序快,但在某些情况下比插入排序更快。希尔排序通常用于嵌入式系统等资源有限的环境。

10 桶排序(Bucket Sort)

        桶排序(Bucket Sort)是一种分布式排序算法,它将元素分散到一组桶中,然后对每个桶中的元素进行排序,最后将所有桶中的元素按顺序合并成一个有序序列。桶排序适用于元素均匀分布在一个范围内的情况,特别适用于浮点数排序。

算法原理

  1. 确定桶的数量和范围,通常根据输入数据的分布来选择桶的数量。如果元素均匀分布在一个范围内,那么可以选择桶的数量等于元素的数量。
  2. 将每个元素分配到相应的桶中。元素的分配可以采用不同的方法,例如线性划分或哈希函数。
  3. 对每个桶中的元素进行排序,可以使用任何排序算法,通常选择插入排序。
  4. 合并所有桶中的元素,按照桶的顺序得到最终的有序序列。
def bucket_sort(arr):
    # 确定桶的数量,这里选择与输入元素数量相同
    n = len(arr)
    if n <= 1:
        return arr
    # 初始化桶
    max_val = max(arr)
    min_val = min(arr)
    bucket_range = (max_val - min_val) / n  # 每个桶的范围
    bucket_count = n  # 桶的数量等于元素数量
    buckets = [[] for _ in range(bucket_count)]
    # 将元素分配到桶中
    for num in arr:
        index = int((num - min_val) / bucket_range)
        buckets[index].append(num)
    # 对每个桶中的元素进行排序
    for i in range(bucket_count):
        buckets[i].sort()
    # 合并所有桶中的元素
    sorted_arr = []
    for bucket in buckets:
        sorted_arr.extend(bucket)
    return sorted_arr
# 示例用法
arr = [0.897, 0.565, 0.656, 0.1234, 0.665, 0.3434]
arr = bucket_sort(arr)
print("桶排序后的数组:", arr)

       桶排序的性能取决于桶的数量和元素的分布。如果元素均匀分布在一个范围内,并且桶的数量足够多,那么桶排序可以非常高效。

  • 桶排序的时间复杂度通常为 O(n + k),其中 n 是元素的数量,k 是桶的数量。
  • 桶排序是一种稳定排序算法,适用于浮点数排序等特定情况。不过,它需要额外的内存空间来存储桶,因此不适用于数据集非常大的情况。
目录
相关文章
|
24天前
|
搜索推荐
冒泡排序算法
【10月更文挑战第19天】冒泡排序是一种基础的排序算法,虽然在实际应用中可能不是最优的选择,但对于理解排序算法的基本原理和过程具有重要意义。
|
1月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
20 1
|
1月前
|
算法 搜索推荐
数据结构与算法学习十八:堆排序
这篇文章介绍了堆排序是一种通过构建堆数据结构来实现的高效排序算法,具有平均和最坏时间复杂度为O(nlogn)的特点。
70 0
数据结构与算法学习十八:堆排序
|
1月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
23 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
1月前
|
算法 搜索推荐
数据结构与算法学习十一:冒泡排序、选择排序、插入排序
本文介绍了冒泡排序、选择排序和插入排序三种基础排序算法的原理、实现代码和测试结果。
17 0
数据结构与算法学习十一:冒泡排序、选择排序、插入排序
|
1月前
|
搜索推荐 C语言
排序算法--冒泡排序
排序算法--冒泡排序
13 0
|
1月前
|
存储 搜索推荐 算法
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
|
1月前
|
搜索推荐 算法
【排序算法(一)】——插入排序,选择排序 —> 深层解析
【排序算法(一)】——插入排序,选择排序 —> 深层解析
|
26天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
11天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。