【算法基础】一文掌握十大排序算法,冒泡排序、插入排序、选择排序、归并排序、计数排序、基数排序、希尔排序和堆排序

简介: 【算法基础】一文掌握十大排序算法,冒泡排序、插入排序、选择排序、归并排序、计数排序、基数排序、希尔排序和堆排序

1 冒泡排序(Bubble Sort)

      冒泡排序是一种基本的排序算法,其核心思想是多次遍历待排序的元素,比较相邻的两个元素,如果它们的顺序不正确,则交换它们,直到整个数组按照指定顺序排列。

def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        for j in range(0, n-i-1):
            # 比较相邻的两个元素
            if arr[j] > arr[j+1]:
                # 如果顺序不正确,则交换它们
                arr[j], arr[j+1] = arr[j+1], arr[j]
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
bubble_sort(arr)
print("冒泡排序后的数组:", arr)

       冒泡排序通过多次遍历数组,每次比较相邻的两个元素,如果它们的顺序不正确就交换它们。这个过程将最大的元素逐渐“冒泡”到数组的末尾。

       时间复杂度为 O(n^2),不适合大规模数据集。

2 插入排序(Insertion Sort)

       插入排序是一种稳定的排序算法,其核心思想是将未排序的元素逐个插入到已排序的部分,从前往后遍历,保持前面的元素有序。

def insertion_sort(arr):
    for i in range(1, len(arr)):
        key = arr[i]
        j = i - 1
        while j >= 0 and key < arr[j]:
            # 将较大的元素向右移动
            arr[j + 1] = arr[j]
            j -= 1
        arr[j + 1] = key
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
insertion_sort(arr)
print("插入排序后的数组:", arr)

       插入排序逐个将未排序的元素插入到已排序的部分,从前往后遍历,保持前面的元素有序。时间复杂度为 O(n^2),适合小规模数据集和部分有序的数据。

3 选择排序(Selection Sort)

       选择排序是一种简单的不稳定排序算法,其核心思想是找到未排序部分的最小元素,将其与未排序部分的第一个元素交换位置。

def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_index = i
        for j in range(i+1, n):
            # 找到未排序部分的最小元素的索引
            if arr[j] < arr[min_index]:
                min_index = j
        # 交换最小元素与未排序部分的第一个元素
        arr[i], arr[min_index] = arr[min_index], arr[i]
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
selection_sort(arr)
print("选择排序后的数组:", arr)

     选择排序通过多次选择未排序部分的最小元素,并将其与未排序部分的第一个元素交换位置来进行排序。时间复杂度为 O(n^2),不适合大规模数据集。

4. 快速排序(Quick Sort)

       快速排序是一种高效的分治排序算法,它选择一个基准元素,将数组分成两部分,左边的元素都小于基准,右边的元素都大于基准,然后递归对左右两部分进行排序。

def quick_sort(arr):
    # 基本情况:如果数组为空或只包含一个元素,无需排序
    if len(arr) <= 1:
        return arr
    # 选择中间元素作为基准点(pivot)
    pivot = arr[len(arr) // 2]
    # 将数组分成三部分:小于、等于、大于基准点的元素
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    # 递归排序左右两部分,然后合并结果
    return quick_sort(left) + middle + quick_sort(right)
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
arr = quick_sort(arr)
print("快速排序后的数组:", arr)
  • 快速排序是一种高效的分治排序算法,它通过选择一个基准点(通常是数组中的中间元素)将数组分成左右两部分,并递归地对左右两部分进行排序。
  • 基本情况是数组为空或只包含一个元素,无需排序。
  • 针对每个元素,将它与基准点进行比较,分成小于、等于和大于基准点的三个子数组。
  • 然后,递归地对左右两部分进行排序,最后将它们与基准点合并,形成一个有序的数组。

5. 归并排序(Merge Sort)

       归并排序是一种稳定的分治排序算法,它将数组分成两半,分别排序,然后将已排序的两个子数组合并成一个有序数组。

def merge_sort(arr):
    # 基本情况:如果数组为空或只包含一个元素,无需排序
    if len(arr) <= 1:
        return arr
    # 将数组分成两半
    mid = len(arr) // 2
    left = arr[:mid]
    right = arr[mid:]
    # 递归地对左右两部分进行排序
    left = merge_sort(left)
    right = merge_sort(right)
    # 合并已排序的左右两部分
    return merge(left, right)
def merge(left, right):
    result = []
    i = j = 0
    # 合并两个已排序的子数组
    while i < len(left) and j < len(right):
        if left[i] < right[j]:
            result.append(left[i])
            i += 1
        else:
            result.append(right[j])
            j += 1
    # 如果左边或右边的子数组还有剩余元素,将它们添加到结果中
    result.extend(left[i:])
    result.extend(right[j:])
    return result
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
arr = merge_sort(arr)
print("归并排序后的数组:", arr)
  • 归并排序是一种稳定的分治排序算法,它将数组递归分成两半,然后合并已排序的子数组。
  • 基本情况是数组为空或只包含一个元素,无需排序。
  • 递归地对左右两部分进行排序,然后使用 merge 函数将它们合并成一个有序的数组。
  • merge 函数将两个已排序的子数组合并,同时维护它们的有序性。

6 堆排序 (Heap Sort)

       堆排序是一种不稳定的排序算法,它使用堆数据结构(通常是最大堆)来进行排序。堆排序分为两个主要步骤:建立堆和排序。

def heapify(arr, n, i):
    largest = i
    left = 2 * i + 1
    right = 2 * i + 2
    # 找到左子节点和右子节点中的最大值
    if left < n and arr[left] > arr[largest]:
        largest = left
    if right < n and arr[right] > arr[largest]:
        largest = right
    # 如果最大值不是当前节点,交换它们
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
def heap_sort(arr):
    n = len(arr)
    # 构建最大堆
    for i in range(n // 2 - 1, -1, -1):
        heapify(arr, n, i)
    # 一个接一个地从堆中取出元素,交换根节点与最后一个节点,然后重新构建堆
    for i in range(n - 1, 0, -1):
        arr[i], arr[0] = arr[0], arr[i]
        heapify(arr, i, 0)
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
heap_sort(arr)
print("堆排序后的数组:", arr)
  • 排序使用堆数据结构(通常是最大堆)来进行排序。首先构建最大堆,然后一个接一个地从堆中取出元素,交换根节点与最后一个节点,然后重新构建堆。
  • heapify 函数用于维护堆的性质,即父节点的值大于或等于子节点的值。
  • 这个算法的时间复杂度为 O(nlogn),是一种高效的排序算法。

7 计数排序 (Counting Sort)

       计数排序是一种非比较排序算法,它根据输入元素的计数来对元素进行排序。它适用于整数或有限范围内的非负整数。

def counting_sort(arr):
    max_val = max(arr)
    min_val = min(arr)
    range_of_elements = max_val - min_val + 1
    count_arr = [0] * range_of_elements
    output_arr = [0] * len(arr)
    # 计数每个元素的出现次数
    for num in arr:
        count_arr[num - min_val] += 1
    # 计算每个元素的累积计数
    for i in range(1, len(count_arr)):
        count_arr[i] += count_arr[i - 1]
    # 根据累积计数将元素放入输出数组
    for i in range(len(arr) - 1, -1, -1):
        output_arr[count_arr[arr[i] - min_val] - 1] = arr[i]
        count_arr[arr[i] - min_val] -= 1
    return output_arr
# 示例用法
arr = [4, 2, 2, 8, 3, 3, 1]
arr = counting_sort(arr)
print("计数排序后的数组:", arr)
  • 计数排序是一种非比较排序算法,适用于整数或有限范围内的非负整数。
  • 首先,计算每个元素的出现次数,然后计算每个元素的累积计数,最后根据累积计数将元素放入输出数组。
  • 这个算法的时间复杂度为 O(n+k),其中 k 是输入范围的大小。

8 基数排序 (Radix Sort)

       基数排序是一种非比较排序算法,它将数字按照每个位数进行排序,从最低位到最高位,依次排列。

def counting_sort(arr, exp):
    n = len(arr)
    output = [0] * n
    count = [0] * 10
    # 计数每个元素的出现次数
    for i in range(n):
        index = arr[i] // exp
        count[index % 10] += 1
    # 计算每个元素的累积计数
    for i in range(1, 10):
        count[i] += count[i - 1]
    # 根据累积计数将元素放入输出数组
    i = n - 1
    while i >= 0:
        index = arr[i] // exp
        output[count[index % 10] - 1] = arr[i]
        count[index % 10] -= 1
        i -= 1
    # 将输出数组的内容复制到原始数组中
    for i in range(n):
        arr[i] = output[i]
def radix_sort(arr):
    max_val = max(arr)
    exp = 1
    while max_val // exp > 0:
        counting_sort(arr, exp)
        exp *= 10
# 示例用法
arr = [170, 45, 75, 90, 802, 24, 2, 66]
radix_sort(arr)
print("基数排序后的数组:", arr)
  • 基数排序是一种非比较排序算法,它按照每个位数进行排序,从最低位到最高位,依次排列。
  • 首先使用计数排序对每个位数进行排序,然后再次对下一个位数进行排序,依次进行直到最高位。
  • 这个算法的时间复杂度为 O(nk),其中 k 是数字的最大位数。

9 希尔排序(Shell Sort)

       希尔排序(Shell Sort)是一种插入排序的改进版本,也被称为缩小增量排序。希尔排序通过将数组分成若干个子序列来排序数据,然后逐渐缩小子序列的间隔,最终得到一个完全排序的数组。希尔排序的主要思想是提前交换较远的元素,以加快排序过程。

算法原理

  1. 选择一个增量序列(间隔序列),通常选择的增量是数组长度的一半,然后逐渐减小增量。
  2. 对于每个增量,将数组分成若干个子序列,每个子序列使用插入排序进行排序。
  3. 重复步骤2,逐渐减小增量,直到增量为1。
  4. 当增量为1时,整个数组成为一个序列,使用插入排序对其进行排序。
def shell_sort(arr):
    n = len(arr)
    gap = n // 2  # 初始增量取数组长度的一半
    while gap > 0:
        for i in range(gap, n):
            temp = arr[i]
            j = i
            # 使用插入排序对子序列进行排序
            while j >= gap and arr[j - gap] > temp:
                arr[j] = arr[j - gap]
                j -= gap
            arr[j] = temp
        gap //= 2  # 缩小增量
# 示例用法
arr = [64, 34, 25, 12, 22, 11, 90]
shell_sort(arr)
print("希尔排序后的数组:", arr)

        希尔排序的关键在于选择合适的增量序列。常见的增量序列有希尔增量、Hibbard增量、Knuth增量等,不同的增量序列会影响排序的性能。

  • 希尔排序的时间复杂度取决于增量序列的选择,平均时间复杂度通常在 O(n^1.25) 到 O(n^2) 之间,比插入排序要快。
  • 希尔排序是一种不稳定排序算法,适用于中等大小的数据集。虽然不如快速排序和归并排序快,但在某些情况下比插入排序更快。希尔排序通常用于嵌入式系统等资源有限的环境。

10 桶排序(Bucket Sort)

        桶排序(Bucket Sort)是一种分布式排序算法,它将元素分散到一组桶中,然后对每个桶中的元素进行排序,最后将所有桶中的元素按顺序合并成一个有序序列。桶排序适用于元素均匀分布在一个范围内的情况,特别适用于浮点数排序。

算法原理

  1. 确定桶的数量和范围,通常根据输入数据的分布来选择桶的数量。如果元素均匀分布在一个范围内,那么可以选择桶的数量等于元素的数量。
  2. 将每个元素分配到相应的桶中。元素的分配可以采用不同的方法,例如线性划分或哈希函数。
  3. 对每个桶中的元素进行排序,可以使用任何排序算法,通常选择插入排序。
  4. 合并所有桶中的元素,按照桶的顺序得到最终的有序序列。
def bucket_sort(arr):
    # 确定桶的数量,这里选择与输入元素数量相同
    n = len(arr)
    if n <= 1:
        return arr
    # 初始化桶
    max_val = max(arr)
    min_val = min(arr)
    bucket_range = (max_val - min_val) / n  # 每个桶的范围
    bucket_count = n  # 桶的数量等于元素数量
    buckets = [[] for _ in range(bucket_count)]
    # 将元素分配到桶中
    for num in arr:
        index = int((num - min_val) / bucket_range)
        buckets[index].append(num)
    # 对每个桶中的元素进行排序
    for i in range(bucket_count):
        buckets[i].sort()
    # 合并所有桶中的元素
    sorted_arr = []
    for bucket in buckets:
        sorted_arr.extend(bucket)
    return sorted_arr
# 示例用法
arr = [0.897, 0.565, 0.656, 0.1234, 0.665, 0.3434]
arr = bucket_sort(arr)
print("桶排序后的数组:", arr)

       桶排序的性能取决于桶的数量和元素的分布。如果元素均匀分布在一个范围内,并且桶的数量足够多,那么桶排序可以非常高效。

  • 桶排序的时间复杂度通常为 O(n + k),其中 n 是元素的数量,k 是桶的数量。
  • 桶排序是一种稳定排序算法,适用于浮点数排序等特定情况。不过,它需要额外的内存空间来存储桶,因此不适用于数据集非常大的情况。
目录
相关文章
|
26天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
126 67
|
2月前
|
搜索推荐
冒泡排序算法
【10月更文挑战第19天】冒泡排序是一种基础的排序算法,虽然在实际应用中可能不是最优的选择,但对于理解排序算法的基本原理和过程具有重要意义。
|
2月前
|
搜索推荐 C语言
排序算法--冒泡排序
排序算法--冒泡排序
22 0
|
2月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
103 80
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
22天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。