【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码

简介: 【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码

绘制子图(subplots)是在Matplotlib中创建多个子图的常见任务。通过子图,您可以将多个图形放置在同一图表中,以便比较不同的数据或可视化多个相关的图形。一般流程如下:

  1. 创建图形对象:首先,您需要创建一个图形对象,可以使用plt.figure()函数来完成。该图形对象代表整个图形窗口,您可以在其中放置多个子图。
  2. 添加子图:使用fig.add_subplot()函数来添加子图。这个函数接受三个参数,分别是行数、列数和子图的索引位置。例如,fig.add_subplot(2, 2, 1)表示将创建一个2x2的网格,并在第一个位置创建子图。
  3. 绘制图表:在每个子图中,您可以使用Matplotlib的绘图函数(如plot()scatter()bar()等)来绘制不同类型的图表。
  4. 子图属性设置:您可以设置每个子图的标题、坐标轴标签、背景颜色、图例等属性,以使其更具可读性和吸引力。
  5. 调整子图布局:Matplotlib允许您调整子图之间的间距,以便更好地组织和排列它们。可以使用plt.subplots_adjust()函数来完成这个任务。
  6. 显示图形:一旦您创建并设置了所有子图,使用plt.show()函数来显示整个图形。


1 基本子图绘制示例

首先,让我们看一个基本的子图绘制示例。使用plt.subplots()函数,您可以创建一个包含多个子图的图表,并将这些子图放置在一个网格中。以下是一个基本的示例:

import matplotlib.pyplot as plt
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# 创建一个包含两个子图的图表
fig, axes = plt.subplots(nrows=1, ncols=2)
# 在第一个子图中绘制正弦函数
axes[0].plot(x, y1, label='Sine Function', color='blue')
axes[0].set_title('Sine Function')
# 在第二个子图中绘制余弦函数
axes[1].plot(x, y2, label='Cosine Function', color='red')
axes[1].set_title('Cosine Function')
# 显示图例
axes[0].legend()
axes[1].legend()
# 显示图形
plt.show()

运行:

       以上代码演示了如何使用Matplotlib创建一个包含两个子图的图表。这两个子图分别显示了正弦函数和余弦函数的曲线。

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦值和余弦值作为y轴数据。
  3. 使用plt.subplots函数创建一个图表和一个由子图对象组成的数组。其中nrows=1表示创建一个行数为1,列数为2的图表。
  4. 在第一个子图中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"。
  5. 在第二个子图中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"。
  6. 显示图例,使用legend函数,在每个子图中显示曲线的标签。
  7. 最后调用plt.show()来显示图形。

2 子图网格布局

       Matplotlib还允许您以更复杂的方式布局子图,以满足您的需求。您可以使用gridspec模块来实现更灵活的子图布局。以下是一个示例,演示如何使用gridspec创建子图网格:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)
# 创建一个包含多个子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(10, 4))
gs = gridspec.GridSpec(1, 3)  # 1行3列的子图布局
# 第一个子图
ax1 = plt.subplot(gs[0, 0])
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Sine Function')
ax1.legend()
# 第二个子图
ax2 = plt.subplot(gs[0, 1])
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.set_title('Cosine Function')
ax2.legend()
# 第三个子图
ax3 = plt.subplot(gs[0, 2])
ax3.plot(x, y3, label='Tangent Function', color='green')
ax3.set_title('Tangent Function')
ax3.legend()
# 调整子图之间的距离
plt.tight_layout()
# 显示图形
plt.show()

运行:

       这个示例创建了一个包含三个子图的图表,使用gridspec模块定义了子图的布局。每个子图包含不同的三角函数,并具有自己的标题和图例。

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦、余弦和正切值作为y轴数据。
  3. 创建一个Figure对象,设置图表的大小为(10, 4)。
  4. 使用gridspec.GridSpec函数创建一个网格布局,指定1行3列的子图布局。
  5. 在第一个子图(ax1)中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"并显示图例(legend)。
  6. 在第二个子图(ax2)中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"并显示图例。
  7. 在第三个子图(ax3)中绘制正切函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Tangent Function"并显示图例。
  8. 调用plt.tight_layout()函数来自动调整子图之间的距离。
  9. 最后调用plt.show()来显示图形。

3 调整子图的尺寸

以下是一些常用的参数,用于调整子图的尺寸和位置:

  1. nrowsncols:这两个参数用于指定子图的网格布局的行数和列数。例如,fig.add_subplot(2, 2, 1)表示一个2x2的网格布局,其中有4个子图。
  2. index:该参数指定子图在网格中的位置。例如,fig.add_subplot(2, 2, 1)表示在2x2的网格中的第一个位置创建子图。
  3. position:通过position参数,您可以设置子图的位置和大小,它是一个四元组,表示子图的左、下、宽度和高度。例如,fig.add_subplot(position=[0.1, 0.1, 0.8, 0.8])表示在图形中创建一个左上角偏移10%并且宽度和高度都为80%的子图。
  4. projection:用于指定子图的投影类型,例如3D子图、极坐标子图等。
  5. polar:一个布尔值,用于指定子图是否使用极坐标。默认为False。

您可以通过设置gridspec中每个子图的相对宽度来调整子图的尺寸。以下示例将第一个子图的宽度设置为其他两个子图的两倍:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)
# 创建一个包含多个子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(12, 4))
 # 1行3列的子图布局,第一个子图宽度为其他两个的两倍
gs = gridspec.GridSpec(1, 3, width_ratios=[2, 1, 1]) 
# 第一个子图
ax1 = plt.subplot(gs[0, 0])
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Sine Function')
ax1.legend()
# 第二个子图
ax2 = plt.subplot(gs[0, 1])
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.set_title('Cosine Function')
ax2.legend()
# 第三个子图
ax3 = plt.subplot(gs[0, 2])
ax3.plot(x, y3, label='Tangent Function', color='green')
ax3.set_title('Tangent Function')
ax3.legend()
# 调整子图之间的距离
plt.tight_layout()
# 显示图形
plt.show()

        以上代码演示了如何使用Matplotlib创建一个包含多个子图的图表,并使用gridspec来定义子图布局。代码的步骤如下:

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦、余弦和正切值作为y轴数据。
  3. 创建一个Figure对象,设置图表的大小为(12, 4)。
  4. 使用gridspec.GridSpec函数创建一个网格布局,指定1行3列的子图布局,并通过width_ratios参数设置第一个子图的宽度为其他两个子图的两倍。
  5. 在第一个子图(ax1)中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"并显示图例(legend)。
  6. 在第二个子图(ax2)中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"并显示图例。
  7. 在第三个子图(ax3)中绘制正切函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Tangent Function"并显示图例。
  8. 调用plt.tight_layout()函数来自动调整子图之间的距离。
  9. 最后调用plt.show()来显示图形。


4 多行多列的子图布局

       您可以使用gridspec创建多行多列的子图布局,以便在一个图表中组织更多的子图。以下示例演示了一个包含多行多列子图的图表:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
# 创建一个包含多行多列子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(3, 2)  # 3行2列的子图布局
# 绘制多行多列的子图
for i in range(3):
    for j in range(2):
        ax = plt.subplot(gs[i, j])
        ax.plot(x, y, label='Sine Function', color='blue')
        ax.set_title(f'Subplot ({i+1}, {j+1})')
        ax.legend()
# 调整子图之间的距离
plt.tight_layout()
# 显示图形
plt.show()

运行:

5 子图之间的共享轴

       您可以通过设置sharexsharey参数来共享子图之间的X轴或Y轴。以下示例演示了在子图之间共享X轴的情况:

import matplotlib.pyplot as plt
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# 创建一个包含多个子图的图表
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(8, 6))
# 第一个子图,共享X轴
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Shared X-Axis')
ax1.legend()
# 第二个子图,共享X轴
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.legend()
# 调整子图之间的距离
plt.tight_layout()
# 显示图形
plt.show()

运行:

共享Y轴示例:

       在这个示例中,我们创建了两个子图,通过sharey=True参数来共享Y轴。这两个子图分别绘制了sin函数和cos函数,并共享相同的Y轴刻度。整体标题用suptitle函数添加。这个示例演示了如何创建共享Y轴的子图。代码如下:

import matplotlib.pyplot as plt
import numpy as np
# 创建示例数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)
# 创建两个子图,共享Y轴
fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(10, 4))
# 在第一个子图上绘制sin函数
ax1.plot(x, y1, label='Sine Function', color='blue', linestyle='--')
ax1.set_title('Subplot 1: Sine Function')
ax1.set_xlabel('X-axis')
ax1.set_ylabel('Y-axis')
ax1.legend()
# 在第二个子图上绘制cos函数
ax2.plot(x, y2, label='Cosine Function', color='red', linestyle='-')
ax2.set_title('Subplot 2: Cosine Function')
ax2.set_xlabel('X-axis')
ax2.legend()
# 添加整体标题
plt.suptitle('Two Subplots Sharing Y-Axis', fontsize=16, fontweight='bold')
# 显示图形
plt.show()

运行:

6 绘制多个子图类型

       您可以在同一个图表中组合不同类型的子图,例如线图和散点图。以下示例演示了如何在同一图表

中绘制多个子图类型:

import matplotlib.pyplot as plt
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
x_scatter = np.random.rand(50) * 2 * np.pi
y_scatter = np.sin(x_scatter)
# 创建一个包含多个子图的图表
fig, axs = plt.subplots(2, 2, figsize=(10, 6))
# 第一个子图:线图
axs[0, 0].plot(x, y1, label='Sine Function', color='blue')
axs[0, 0].set_title('Line Plot')
axs[0, 0].legend()
# 第二个子图:散点图
axs[0, 1].scatter(x_scatter, y_scatter, label='Scatter Points', color='red', marker='o')
axs[0, 1].set_title('Scatter Plot')
axs[0, 1].legend()
# 第三个子图:线图
axs[1, 0].plot(x, y2, label='Cosine Function', color='green')
axs[1, 0].set_title('Line Plot')
axs[1, 0].legend()
# 第四个子图:散点图
axs[1, 1].scatter(x_scatter, y_scatter, label='Scatter Points', color='purple', marker='s')
axs[1, 1].set_title('Scatter Plot')
axs[1, 1].legend()
# 调整子图之间的距离
plt.tight_layout()
# 显示图形
plt.show()

运行:

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,并计算对应的正弦值和余弦值作为y轴数据。还生成了50个随机点用于绘制散点图。
  3. 创建一个包含2行2列子图的图表,使用 subplots函数并设置 figsize参数指定图表的大小。subplots函数会返回一个Figure对象和一个包含子图的Axes对象的二维数组。
  4. 在第一个子图(axs[0, 0])中绘制正弦函数的线图,使用 plot函数,并指定标签(label)和颜色(color)。设置标题(set_title)为"Line Plot"并显示图例(legend)。
  5. 在第二个子图(axs[0, 1])中绘制散点图,使用 scatter函数,并指定标签、颜色和标记(marker)类型。同样设置标题和图例。
  6. 在第三个子图(axs[1, 0])中绘制余弦函数的线图,使用 plot函数,并指定标签和颜色。设置标题和图例。
  7. 在第四个子图(axs[1, 1])中绘制散点图,使用 scatter函数,并指定标签、颜色和标记类型。同样设置标题和图例。
  8. 使用 tight_layout函数调整子图之间的距离,使其更美观。
  9. 调用 show函数显示图形。


7 实战:

绘制一个大图,里面包含6个不同类别的子图,不均匀布局。

第一行放一个子图,第二行放两个子图 ,第三行放三个子图 ,分别自适应设置子图的尺寸和背景色,示例与代码如下:

import matplotlib.pyplot as plt
import numpy as np
# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
# 创建图形
fig = plt.figure(figsize=(12, 8))
 # 在上方添加母图标题
fig.suptitle('Customized Subplots Example', fontsize=16, fontweight='bold') 
# fig.suptitle('Customized Subplots Example', fontsize=16, fontweight='bold', y=0.05) # 在下方添加母图标题
# 调整子图的布局,增加垂直间距,避免子图之间有交叉
plt.subplots_adjust(hspace=0.5)
# 第一行,一个子图,绘制线图
ax1 = fig.add_subplot(3, 1, 1)
ax1.plot(x, y, color='blue', label='Sine Function', linewidth=2, linestyle='--', marker='o', markersize=5)
ax1.set_title('Line Plot', fontsize=14)
ax1.set_facecolor('lightgray')
ax1.set_xlabel('X-axis', fontsize=12)
ax1.set_ylabel('Y-axis', fontsize=12)
ax1.legend()
# 添加注释
ax1.annotate('Peak Point', xy=(np.pi/2, 1), xytext=(np.pi/2, 1.2),
             arrowprops=dict(facecolor='black', shrink=0.05),
             fontsize=12, bbox=dict(boxstyle='round,pad=0.3', edgecolor='black', facecolor='yellow'))
# 第二行,两个子图,一个散点图,一个柱状图
ax2 = fig.add_subplot(3, 2, 3)
ax2.scatter(x, y, color='red', label='Scatter Plot', s=20)
ax2.set_title('Scatter Plot', fontsize=14)
ax2.set_facecolor('lightyellow')
ax2.set_xlabel('X-axis', fontsize=12)
ax2.set_ylabel('Y-axis', fontsize=12)
ax2.legend()
ax3 = fig.add_subplot(3, 2, 4)
ax3.bar(x, y, color='green', label='Bar Plot', alpha=0.7)
ax3.set_title('Bar Plot', fontsize=14)
ax3.set_facecolor('lightgreen')
ax3.set_xlabel('X-axis', fontsize=12)
ax3.set_ylabel('Y-axis', fontsize=12)
ax3.legend()
# 第三行,三个子图,一个直方图,一个饼图,一个箱线图
ax4 = fig.add_subplot(3, 3, 7)
ax4.hist(y, bins=20, color='purple', label='Histogram', alpha=0.7)
ax4.set_title('Histogram', fontsize=14)
ax4.set_facecolor('lightpink')
ax4.set_xlabel('X-axis', fontsize=12)
ax4.set_ylabel('Frequency', fontsize=12)
ax4.legend()
ax5 = fig.add_subplot(3, 3, 8)
ax5.pie([len(y[y > 0]), len(y[y < 0])], labels=['Positive', 'Negative'], colors=['orange', 'lightblue'], autopct='%1.1f%%')
ax5.set_title('Pie Chart', fontsize=14)
ax5.set_facecolor('lightcoral')
ax5.legend()
ax6 = fig.add_subplot(3, 3, 9)
ax6.boxplot(y, vert=False, widths=0.3, patch_artist=True, boxprops=dict(facecolor='lightgray'))
ax6.set_title('Box Plot', fontsize=14)
ax6.set_facecolor('lightblue')
ax6.set_xlabel('X-axis', fontsize=12)
ax6.legend([])  # 添加空的图例以解决警告
# 调整子图布局
plt.tight_layout()
# 显示图形
plt.show()

运行:

上面的示例代码演示了如何创建一个包含不同类型子图的图形,并对每个子图进行了定制化设置。代码流程:

  1. 创建示例数据:使用numpy生成示例数据,这里生成了一个sin函数的数据。
  2. 创建图形对象:使用plt.figure()创建一个图形对象,可以设置图形的大小。
  3. 添加母图标题:使用fig.suptitle()可以为整个图形添加一个标题。
  4. 调整子图的布局:使用plt.subplots_adjust()可以调整子图之间的间距,这里增加了垂直间距。
  5. 创建子图:使用fig.add_subplot()创建子图,指定子图的位置和数量。
  6. 绘制不同类型的子图:根据需要,创建不同类型的子图,如线图、散点图、柱状图、直方图、饼图、箱线图等。
  7. 设置子图的标题、背景色、坐标轴标签和图例:使用set_title()set_facecolor()set_xlabel()set_ylabel()legend()方法来设置子图的各种属性。
  8. 添加注释:使用annotate()方法可以在子图上添加注释。
  9. 调整子图布局:使用plt.tight_layout()可以自动调整子图的布局,使其适应图形大小
  10. 显示图形:使用plt.show()显示最终的图形。

这个示例演示了如何在一个图形中创建多个子图,并对每个子图进行不同的设置和绘制不同类型的图表。

目录
相关文章
|
3天前
|
物联网 Python
请问:如何使用python对物联网平台上设备的属性进行更改?
为验证项目可行性,本实验利用阿里云物联网平台创建设备并定义电流、电压两个整型属性。通过Python与平台交互,实现对设备属性的控制,确保后续项目的顺利进行。此过程涵盖设备连接、数据传输及属性调控等功能。
|
4月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
26天前
|
存储 数据处理 Python
Python如何显示对象的某个属性的所有值
本文介绍了如何在Python中使用`getattr`和`hasattr`函数来访问和检查对象的属性。通过这些工具,可以轻松遍历对象列表并提取特定属性的所有值,适用于数据处理和分析任务。示例包括获取对象列表中所有书籍的作者和检查动物对象的名称属性。
30 2
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
73 8
|
2月前
|
Linux Python Windows
Matplotlib 中设置自定义中文字体的正确姿势
【11月更文挑战第16天】Matplotlib 默认不支持中文字体显示,需手动配置。方法包括:1) 修改全局字体设置,适用于整个脚本;2) 局部设置特定元素的字体;3) 使用系统字体名称,但可能因系统而异。通过这些方法可以有效解决中文乱码问题,确保图表中文本的正确显示。
142 3
|
3月前
|
索引 Python
python-类属性操作
【10月更文挑战第11天】 python类属性操作列举
34 1
|
4月前
|
API Python
使用Python requests库下载文件并设置超时重试机制
使用Python的 `requests`库下载文件时,设置超时参数和实现超时重试机制是确保下载稳定性的有效方法。通过这种方式,可以在面对网络波动或服务器响应延迟的情况下,提高下载任务的成功率。
214 1
|
4月前
|
存储 API 索引
让 Python 的属性查找具有 C 一级的性能
让 Python 的属性查找具有 C 一级的性能
24 0
|
4月前
|
Python
Python中类属性与实例属性的区别
了解这些区别对于编写高效、易维护的Python代码至关重要。正确地使用类属性和实例属性不仅能帮助我们更好地组织代码,还能提高代码运行的效率。
50 0
|
4月前
|
数据可视化 数据处理 Python
Matplotlib:Python绘图利器之王
Matplotlib:Python绘图利器之王
29 0