Markov Decision Process,MDP

简介: 马尔可夫决策过程(Markov Decision Process,MDP)是一种用于描述决策者在马尔可夫环境中进行决策的数学模型。它由四个核心要素组成:状态(State)、动作(Action)、转移概率(Transition Probability)和奖励(Reward)。在 MDP 中,智能体(Agent)需要在给定的状态下选择一个动作,然后根据状态转移概率和奖励更新状态,最终目标是最大化累积奖励。

马尔可夫决策过程(Markov Decision Process,MDP)是一种用于描述决策者在马尔可夫环境中进行决策的数学模型。它由四个核心要素组成:状态(State)、动作(Action)、转移概率(Transition Probability)和奖励(Reward)。在 MDP 中,智能体(Agent)需要在给定的状态下选择一个动作,然后根据状态转移概率和奖励更新状态,最终目标是最大化累积奖励。
MDP 可以用以下四个基本方程表示:

  1. 状态转移方程(State Transition Equation):P(s'|s, a) = 转移概率,表示在给定状态下执行某个动作后,转移到新状态的概率。
  2. 奖励方程(Reward Equation):R(s, a) = 奖励,表示在给定状态下执行某个动作后,获得的奖励。
  3. 状态值方程(State Value Equation):V(s) = 期望奖励,表示在给定状态下,执行某个动作后,期望获得的累积奖励。
  4. 动作值方程(Action Value Equation):Q(s, a) = 期望奖励,表示在给定状态下,执行某个动作后,期望获得的累积奖励。
    MDP 的解决方法之一是值迭代(Value Iteration),通过不断更新状态值和动作值矩阵,最终找到最优策略。
    下面是一个简单的 MDP Demo:

import numpy as np

定义状态转移概率矩阵

transition_prob = np.array([[0.2, 0.5, 0.3],
[0.4, 0.1, 0.5],
[0.1, 0.8, 0.1]])

定义奖励矩阵

reward = np.array([[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])

初始化状态值矩阵

V = np.zeros(3)

通过值迭代更新状态值矩阵

for _ in range(1000):
for i in range(3):
max_prob = 0
max_state = 0
for j in range(3):
prob = transition_prob[i][j] * V[j]
if prob > max_prob:
max_prob = prob
max_state = j
V[i] = max_prob

输出最终状态值矩阵

print("最终状态值矩阵:")
print(V)

定义动作值矩阵

Q = np.zeros((3, 3))

通过值迭代更新动作值矩阵

for _ in range(1000):
for i in range(3):
for j in range(3):
Q[i][j] = transition_prob[i][j] * V[j]

输出最终动作值矩阵

print("\n最终动作值矩阵:")
print(Q)
CopyCopy

应用场景包括:

  1. 游戏:MDP 可以用于训练游戏 AI,例如 AlphaGo、AlphaStar 等。
  2. 自动化控制:MDP 可以用于优化控制系统的决策,例如工业机器人、自动驾驶等。
  3. 资源调度:MDP 可以用于优化资源分配,例如电力系统、无线通信网络等。
  4. 推荐系统:MDP 可以用于优化推荐策略,例如电商网站、社交媒体等。
目录
相关文章
|
3月前
|
移动开发 算法 数据挖掘
【博士每天一篇文献-算法】Extending stability through hierarchical clusters in Echo State Networks
本文研究了在回声状态网络(ESN)中引入分层聚类结构对网络稳定性的影响,发现通过调整簇内和簇间的连接性及每个簇的主干单元数量,可以扩展谱半径的稳定范围,从而提高网络的稳定性和性能。
30 2
|
3月前
|
机器学习/深度学习 编解码 人工智能
【文献学习】Deep Learning for Joint Channel Estimation and Signal Detection in OFDM Systems
该文章提出了一种基于深度学习的方法,用于OFDM系统中的联合信道估计和信号检测,通过信道估计网络(CENet)和信号检测网络(CCRNet)改善了传统方法的性能。
46 2
|
3月前
|
机器学习/深度学习
【文献学习】2 Power of Deep Learning for Channel Estimation and Signal Detection in OFDM
研究成果是:如果有足够的导频,则深度学习模型可以获得与传统方法相当的性能,但是在有限的导频、去除CP和非线性噪声下,深度学习模型更优。
58 1
|
5月前
|
机器学习/深度学习 算法 关系型数据库
Hierarchical Attention-Based Age Estimation and Bias Analysis
【6月更文挑战第8天】Hierarchical Attention-Based Age Estimation论文提出了一种深度学习方法,利用层次注意力和图像增强来估计面部年龄。通过Transformer和CNN,它学习局部特征并进行序数分类和回归,提高在CACD和MORPH II数据集上的准确性。论文还包括对种族和性别偏倚的分析。方法包括自我注意的图像嵌入和层次概率年龄回归,优化多损失函数。实验表明,该方法在RS和SE协议下表现优越,且在消融研究中验证了增强聚合和编码器设计的有效性。
36 2
|
机器学习/深度学习 算法 计算机视觉
NeRF-Pose: A First-Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Estimation
NeRF-Pose: A First-Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Estimation
257 0
|
机器学习/深度学习 自然语言处理
【论文精读】COLING 2022 - DESED: Dialogue-based Explanation for Sentence-level Event Detection
最近许多句子级事件检测的工作都集中在丰富句子语义上,例如通过多任务或基于提示的学习。尽管效果非常好,但这些方法通常依赖于标签广泛的人工标注
93 0
|
机器学习/深度学习 自然语言处理 算法
SS-AGA:Multilingual Knowledge Graph Completion with Self-Supervised Adaptive Graph Alignment 论文解读
预测知识图(KG)中缺失的事实是至关重要的,因为现代知识图远未补全。由于劳动密集型的人类标签,当处理以各种语言表示的知识时,这种现象会恶化。
100 0
|
机器学习/深度学习 存储 数据挖掘
Global Constraints with Prompting for Zero-Shot Event Argument Classification 论文解读
确定事件论元的角色是事件抽取的关键子任务。大多数以前的监督模型都利用了昂贵的标注,这对于开放域应用程序是不实际的。
71 0
|
机器学习/深度学习 开发框架 算法
动手学强化学习(二):马尔可夫决策过程 (Markov decision process,MDP)
 马尔可夫决策过程(Markov decision process,MDP)是强化学习的重要概念。要学好强化学习,我们首先要掌握马尔可夫决策过程的基础知识。前两章所说的强化学习中的环境一般就是一个马尔可夫决策过程。与多臂老虎机问题不同,马尔可夫决策过程包含状态信息以及状态之间的转移机制。如果要用强化学习去解决一个实际问题,第一步要做的事情就是把这个实际问题抽象为一个马尔可夫决策过程,也就是明确马尔可夫决策过程的各个组成要素。本章将从马尔可夫过程出发,一步一步地进行介绍,最后引出马尔可夫决策过程。
1523 0
|
机器学习/深度学习
【论文阅读】(2019)SimGNN:A Neural Network Approach to Fast Graph Similarity Computation
- 图形相似性搜索是最重要的基于图形的应用程序之一,例如查找与查询化合物最相似的化合物。 - 图相似性距离计算,如图编辑距离(GED)和最大公共子图(MCS),是图相似性搜索和许多其他应用程序的核心操作,但实际计算成本很高。 - 受神经网络方法最近成功应用于若干图形应用(如节点或图形分类)的启发,我们提出了一种新的基于神经网络的方法来解决这一经典但具有挑战性的图形问题,**旨在减轻计算负担,同时保持良好的性能**。 - 提出的**方法称为SimGNN**,它结合了两种策略。 - 首先,我们**设计了一个可学习的嵌入函数**,将每个图映射到一个嵌入向量中,从而提供图的全局摘要。**提出了一种新的
260 0
【论文阅读】(2019)SimGNN:A Neural Network Approach to Fast Graph Similarity Computation