【NumPy 数组副本 vs 视图、NumPy 数组形状、重塑、迭代】

简介: 【NumPy 数组副本 vs 视图、NumPy 数组形状、重塑、迭代】

NumPy 数组副本 vs 视图

副本和视图之间的区别

副本和数组视图之间的主要区别在于副本是一个新数组,而这个视图只是原始数组的视图。

副本拥有数据,对副本所做的任何更改都不会影响原始数组,对原始数组所做的任何更改也不会影响副本。

视图不拥有数据,对视图所做的任何更改都会影响原始数组,而对原始数组所做的任何更改都会影响视图。

副本

实例:

进行复制,更改原始数组并显示两个数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
arr[0] = 61
print(arr) 
print(x)

该副本不应受到对原始数组所做更改的影响。

视图:

实例

创建视图,更改原始数组,然后显示两个数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
arr[0] = 61
print(arr) 
print(x)

视图应该受到对原始数组所做更改的影响。

在视图中进行更改:

实例

创建视图,更改视图,并显示两个数组:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.view()
x[0] = 31
print(arr) 
print(x)

原始数组应该受到对视图所做更改的影响。

检查数组是否拥有数据

如上所述,副本拥有数据,而视图不拥有数据,但是我们如何检查呢?

每个 NumPy 数组都有一个属性 base,如果该数组拥有数据,则这个 base 属性返回 None。

否则,base 属性将引用原始对象。

实例

打印 base 属性的值以检查数组是否拥有自己的数据:

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
x = arr.copy()
y = arr.view()
print(x.base)
print(y.base)

副本返回 None。

视图返回原始数组。

NumPy 数组形状

数组的形状是每个维中元素的数量。

获取数组的形状

NumPy 数组有一个名为 shape 的属性,该属性返回一个元组,每个索引具有相应元素的数量。

实例

打印 2-D 数组的形状:

import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)

上面的例子返回 (2, 4),这意味着该数组有 2 个维,每个维有 4 个元素。

实例

利用 ndmin 使用值 1,2,3,4 的向量创建有 5 个维度的数组,并验证最后一个维度的值为 4:

import numpy as np
arr = np.array([1, 2, 3, 4], ndmin=5)
print(arr)
print('shape of array :', arr.shape)

元组的形状代表什么?

每个索引处的整数表明相应维度拥有的元素数量。

上例中的索引 4,我们的值为 4,因此可以说第 5 个 ( 4 + 1 th) 维度有 4 个元素。

NumPy 数组重塑

重塑意味着更改数组的形状。

数组的形状是每个维中元素的数量。

通过重塑,我们可以添加或删除维度或更改每个维度中的元素数量。

从 1-D 重塑为 2-D

实例

将以下具有 12 个元素的 1-D 数组转换为 2-D 数组。

最外面的维度将有 4 个数组,每个数组包含 3 个元素:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(4, 3)
print(newarr)

从 1-D 重塑为 3-D

实例

将以下具有 12 个元素的 1-D 数组转换为 3-D 数组。

最外面的维度将具有 2 个数组,其中包含 3 个数组,每个数组包含 2 个元素:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
newarr = arr.reshape(2, 3, 2)
print(newarr)

我们可以重塑成任何形状吗?

是的,只要重塑所需的元素在两种形状中均相等。

我们可以将 8 元素1D 数组重塑为 2 行 2D 数组中的 4 个元素,但是我们不能将其重塑为 3 元素 3 行 2D 数组,因为这将需要 3x3 = 9 个元素。

实例

尝试将具有 8 个元素的 1D 数组转换为每个维度中具有 3 个元素的 2D 数组(将产生错误):

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
newarr = arr.reshape(3, 3)
print(newarr)

返回副本还是视图?

实例

检查返回的数组是副本还是视图:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
print(arr.reshape(2, 4).base)

上面的例子返回原始数组,因此它是一个视图。

未知的维

您可以使用一个“未知”维度。

这意味着您不必在 reshape 方法中为维度之一指定确切的数字。

传递 -1 作为值,NumPy 将为您计算该数字。

实例

将 8 个元素的 1D 数组转换为 2x2 元素的 3D 数:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8])
newarr = arr.reshape(2, 2, -1)
print(newarr)

注释:我们不能将 -1 传递给一个以上的维度。

展平数组

展平数组(Flattening the arrays)是指将多维数组转换为 1D 数组。

我们可以使用 reshape(-1) 来做到这一点。

实例

把数组转换为 1D 数组:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
newarr = arr.reshape(-1)
print(newarr)

注释:有很多功能可以更改 numpy flatten、ravel 中数组形状,还可以重新排列元素 rot90、flip、fliplr、flipud 等。这些功能属于 numpy 的中级至高级部分。

NumPy数组迭代

迭代意味着逐一遍历元素。

当我们在 numpy 中处理多维数组时,可以使用 python 的基本 for 循环来完成此操作。

如果我们对 1-D 数组进行迭代,它将逐一遍历每个元素。

实例

迭代以下一维数组的元素:

import numpy as np
arr = np.array([1, 2, 3])
for x in arr:
  print(x)

迭代 2-D 数组

在 2-D 数组中,它将遍历所有行。

实例

迭代以下二维数组的元素:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
  print(x)

如果我们迭代一个 n-D 数组,它将逐一遍历第 n-1 维。

如需返回实际值、标量,我们必须迭代每个维中的数组。

实例

迭代 2-D 数组的每个标量元素:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
  for y in x:
    print(y)

迭代 3-D 数组

在 3-D 数组中,它将遍历所有 2-D 数组。

实例

迭代以下 3-D 数组的元素:

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
  print(x)

要返回实际值、标量,我们必须迭代每个维中的数组。

实例

迭代到标量:

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
  for y in x:
    for z in y:
      print(z)

使用 nditer() 迭代数组

函数 nditer() 是一个辅助函数,从非常基本的迭代到非常高级的迭代都可以使用。它解决了我们在迭代中面临的一些基本问题,让我们通过例子进行介绍。

迭代每个标量元素

在基本的 for 循环中,迭代遍历数组的每个标量,我们需要使用 n 个 for 循环,对于具有高维数的数组可能很难编写。

实例

遍历以下 3-D 数组:

import numpy as np
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
for x in np.nditer(arr):
  print(x)

迭代不同数据类型的数组

我们可以使用 op_dtypes 参数,并传递期望的数据类型,以在迭代时更改元素的数据类型。

NumPy 不会就地更改元素的数据类型(元素位于数组中),因此它需要一些其他空间来执行此操作,该额外空间称为 buffer,为了在 nditer() 中启用它,我们传参 flags=[‘buffered’]。

实例

以字符串形式遍历数组:

import numpy as np
arr = np.array([1, 2, 3])
for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):
  print(x)

以不同的步长迭代

我们可以使用过滤,然后进行迭代。

实例

每遍历 2D 数组的一个标量元素,跳过 1 个元素:

import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
for x in np.nditer(arr[:, ::2]):
  print(x)

使用 ndenumerate() 进行枚举迭代

枚举是指逐一提及事物的序号。

有时,我们在迭代时需要元素的相应索引,对于这些用例,可以使用 ndenumerate() 方法。

实例

枚举以下 1D 数组元素:

import numpy as np
arr = np.array([1, 2, 3])
for idx, x in np.ndenumerate(arr):
  print(idx, x)

实例

枚举以下 2D 数组元素:

import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
for idx, x in np.ndenumerate(arr):
  print(idx, x)
相关文章
|
1月前
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
35 1
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
69 10
|
1月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
27 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
1月前
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
|
1月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
87 4
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
77 0
|
3月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
60 0
|
18天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
27 3
|
19天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
34 2
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
46 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征