Hbase+ES和MongoDB存储大数据的选用

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Hbase+ES和MongoDB存储大数据的选用

1 需求

解决海量数据的存储,并且能够实现海量数据的秒级查询

Hbase是典型的nosql,是一种构建在HDFS之上的分布式、面向列的存储系统,在需要的时候可以进行实时的大规模数据集的读写操作;但是hbase的语法非常固话,即便在hbase之上嫁接了phoneix在应对复杂查询的时候,仍然力不从心;

20210410200330201.png


这里只说是大公司,小公司一个HBASE绝对够用


所以说很多公司在历史遗留问题,最开始数据存储在hbase上,当业务越来越复杂,数据量越来越大的时候,使用hbase构建复杂的查询就很吃力了,甚至很多指标无法完成;


这个时候,我们就是用elasticsearch架构在hbase之上;


海量的数据存储使用hbase,数据的即席查询(快速检索)使用elasticsearch


通过elasticsearch+hbase就可以做到海量数据的复杂查询;


在操作之前,我们还要考虑:一批数据在elasticsearch中构建索引的时候,针对每一个字段要分析是否存储和是否构建索引;


ES+Hbase的话,公司的使用是将ES的索引就行和实体类就行一个索引映射,然后用一个封装好的服务之后推入索引库中数据,具体还没研究不是很清楚,这种框架类的东西会用就行了,问题也不大,因为以前写的话,是自己从数据库查询数据做一个批量导入,应该原理上是一样的,之后就是通过es的索引支持然后查询Hbase,这里我想应该是es充当hbase的索引进行查询,我们以前的是用的mongodb是支持10亿级别数据再往上就不行了,hbase支持百亿数据,这里hbase并且能够实现海量数据的秒级查询,我查询了一下hbase的语法非常固话,即便在hbase之上嫁接了phoneix在应对复杂查询的时候,仍然力不从心,当业务越来越复杂,数据量越来越大的时候,使用hbase构建复杂的查询就很吃力了,甚至很多指标无法完成,所以这个es起了关键性因素


实际应用:先ES根据条件查询到分页数据,或者是list里面封装的是那个所有实体类、然后遍历,通过遍历到的id去查hbase,之后就可以封装Dto,然后返回List


2 架构设计

a7ee90be782abdd81549b4ca76f8253c.png


3 HBase和MongoDB的区别

Mongodb用于存储非结构化数据,尤其擅长存储json格式的数据或者是一些很难建索引的文本数据,。存储的量大概在10亿级别,再往上性能就下降了,除非另外分库。

Hbase是架构在hdfs上的列式存储,擅长rowkey的快速查询,但模糊匹配查询(其实是前模糊或全模糊)不擅长,但存储的量可以达到百亿甚至以上,比mongodb的存储量大多了。

20210410195201627.png


原因就在于写入的速度,hbase由于只维护一个主键,写入的速度要比mongodb这种要维护所有索引的数据库快多了。hbase占用两台机器能完成的事情,mongodb要占用更多的机器,每台机器按一年20000的费用,几百台下来就是一笔很大的费用。但是代价就是hbase记录下东西以后,只能事后通过全表检索或按照索引范围的方式进行整体分析,而不能对具体每个人的数据进行实时分析,更强调数据分析能力而不是实时数据查询能力,因此各有千秋吧。像用户行为分析的这种,一开始产品经理可能会具体看某一个人的数据,但是新鲜过后,只会看程序的分析结果了。因此从经济的角度出发,对于用户行为分析这种不需要实时数据的需求来说,hbase+mysql就可以用最经济的方式解决了。mongodb比较适合需要实时返回数据的大数据应用。


总结:MongoDB更像传统的关系型数据库,更善于做查询。Hbase更偏向非关系型数据库,扩展储存能力强.

Mysql数据量增加到千万的时候,响应时间上升很多和吞吐量下降很多。需要分表或者分片。

(1)从平均响应时间来看,mongodb占据绝对优势。

(2)从吞吐量上来看,mongodb占据绝对优势。

(3)对于千万或者更大的数据量,应该是要分区或分片,同时考虑分区容错性。如下图,mongodb属于CP,同时满足一致性(C,Consistency)、分区容错性(P,Partition Tolerance)。MySQL属于CA,同时满足一致性(C,Consistency)、可用性(A, Availability)。


其实后期很多公司都不选用Mongodb因为一旦数据量过大,再去改结构很复杂


京东已经做了替换

20210410200625208.png

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
2月前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
42 4
|
2月前
|
消息中间件 JSON NoSQL
从 ES Kafka Mongodb Restful ... 取到 json 之后
JSON 是一种广泛使用的数据交换格式,但其计算和处理能力有限。esProc SPL 是一款强大的开源计算引擎,能够高效解析 JSON 数据,并支持复杂的过滤、分组、连接等操作。它不仅兼容多种数据源,如 RESTful、ElasticSearch、MongoDB 和 Kafka,还提供了游标对象处理大数据流,支持与 Java 应用无缝集成,实现灵活的业务逻辑处理。
|
3月前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
3月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
60 4
|
3月前
|
消息中间件 存储 缓存
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
大数据-71 Kafka 高级特性 物理存储 磁盘存储特性 如零拷贝、页缓存、mmp、sendfile
85 3
|
3月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
59 1
|
3月前
|
存储 消息中间件 大数据
大数据-68 Kafka 高级特性 物理存储 日志存储概述
大数据-68 Kafka 高级特性 物理存储 日志存储概述
39 1
|
3月前
|
存储 算法 NoSQL
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
大数据-138 - ClickHouse 集群 表引擎详解3 - MergeTree 存储结构 数据标记 分区 索引 标记 压缩协同
55 0
|
3月前
|
存储 消息中间件 分布式计算
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
大数据-137 - ClickHouse 集群 表引擎详解2 - MergeTree 存储结构 一级索引 跳数索引
52 0
|
3月前
|
存储 SQL 分布式计算
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
大数据-127 - Flink State 04篇 状态原理和原理剖析:状态存储 Part2
30 0