ElasticSearch高级操作2

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: ElasticSearch高级操作2

2.4 matchQuery 查询条件进行分词or或and进行查询

match查询:

•会对查询条件进行分词。

•然后将分词后的查询条件和词条进行等值匹配

默认取并集(OR)

# match查询
GET goods/_search
{
  "query": {
    "match": {
      "title": "华为手机"
    }
  },
  "size": 500
}

match 的默认搜索(or 并集)

例如:华为手机,会分词为 “华为”,“手机” 只要出现其中一个词条都会搜索到

match的 and(交集) 搜索

例如:例如:华为手机,会分词为 “华为”,“手机” 但要求“华为”,和“手机”同时出现在词条中

总结:

  • term query会去倒排索引中寻找确切的term,它并不知道分词器的存在。这种查询适合keywordnumericdate
  • match query知道分词器的存在。并且理解是如何被分词的

2.5 模糊查询-脚本

2.5.1 wildcard查询

wildcard查询:会对查询条件进行分词。还可以使用通配符 ?(任意单个字符) 和 * (0个或多个字符)

"*华*"  包含华字的
"华*"   华字后边多个字符
"华?"  华字后边多个字符
"*华"或"?华" 会引发全表(全索引)扫描 注意效率问题


# wildcard 查询。查询条件分词,模糊查询
GET goods/_search
{
  "query": {
    "wildcard": {
      "title": {
        "value": "华*"
      }
    }
  }
}

2.5.2正则查询

\W:匹配包括下划线的任何单词字符,等价于 [A-Z a-z 0-9_]   开头的反斜杠是转义符
+号多次出现
(.)*为任意字符
正则查询取决于正则表达式的效率
GET goods/_search
{
  "query": {
    "regexp": {
      "title": "\\w+(.)*"
    }
  }
}

2.5.3前缀查询

对keyword类型支持比较好

# 前缀查询 对keyword类型支持比较好
GET goods/_search
{
  "query": {
    "prefix": {
      "brandName": {
        "value": "三"
      }
    }
  }
}

2.6 模糊查询-JavaAPI

//模糊查询
WildcardQueryBuilder query = QueryBuilders.wildcardQuery("title", "华*");//华后多个字符
//正则查询
 RegexpQueryBuilder query = QueryBuilders.regexpQuery("title", "\\w+(.)*");
 //前缀查询
 PrefixQueryBuilder query = QueryBuilders.prefixQuery("brandName", "三");

2.7 范围&排序查询

# 范围查询
GET goods/_search
{
  "query": {
    "range": {
      "price": {
        "gte": 2000,
        "lte": 3000
      }
    }
  },
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}
 //范围查询 以price 价格为条件
RangeQueryBuilder query = QueryBuilders.rangeQuery("price");
//指定下限
query.gte(2000);
//指定上限
query.lte(3000);
sourceBuilder.query(query);
//排序  价格 降序排列
sourceBuilder.sort("price",SortOrder.DESC);

2.8 queryString查询-多个字段取并集查询

queryString 多条件查询

•会对查询条件进行分词。

•然后将分词后的查询条件和词条进行等值匹配

•默认取并集(OR)

•可以指定多个查询字段

query_string:识别query中的连接符(or 、and)

# queryString
GET goods/_search
{
  "query": {
    "query_string": {
      "fields": ["title","categoryName","brandName"], 
      "query": "华为 AND 手机"
    }
  }
}

simple_query_string:不识别query中的连接符(or 、and),查询时会将 “华为”、“and”、“手机”分别进行查询

GET goods/_search
{
  "query": {
    "simple_query_string": {
      "fields": ["title","categoryName","brandName"], 
      "query": "华为 AND 手机"
    }
  }
}

query_string:有default_operator连接符的脚本

GET goods/_search
{
  "query": {
    "query_string": {
      "fields": ["title","brandName","categoryName"],
      "query": "华为手机 "
      , "default_operator": "AND"
    }
  }
}

java代码

QueryStringQueryBuilder query = QueryBuilders.queryStringQuery("华为手机").field("title").field("categoryName")
.field("brandName").defaultOperator(Operator.AND);

simple_query_string:有default_operator连接符的脚本

GET goods/_search
{
  "query": {
    "simple_query_string": {
      "fields": ["title","brandName","categoryName"],
      "query": "华为手机 "
      , "default_operator": "OR"
    }
  }
}

注意:query中的or and 是查询时 匹配条件是否同时出现----or 出现一个即可,and 两个条件同时出现

default_operator的or and 是对结果进行 并集(or)、交集(and)

2.9 布尔查询-脚本

boolQuery:对多个查询条件连接。连接方式:

•must(and):条件必须成立

•must_not(not):条件必须不成立

•should(or):条件可以成立

•filter:条件必须成立,性能比must高。不会计算得分

**得分:**即条件匹配度,匹配度越高,得分越高

# boolquery
#must和filter配合使用时,max_score(得分)是显示的
#must 默认数组形式
GET goods/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "brandName": {
              "value": "华为"
            }
          }
        }
      ],
      "filter":[ 
        {
        "term": {
          "title": "手机"
        }
       },
       {
         "range":{
          "price": {
            "gte": 2000,
            "lte": 3000
         }
         }
       }
      ]
    }
  }
}
#filter 单独使用   filter可以是单个条件,也可多个条件(数组形式)
GET goods/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "brandName": {
              "value": "华为"
            }
          }
        }
      ]
    }
  }
}


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
6月前
|
安全 大数据 API
elasticsearch|大数据|elasticsearch的api部分实战操作以及用户和密码的管理
elasticsearch|大数据|elasticsearch的api部分实战操作以及用户和密码的管理
291 0
|
5月前
|
JSON DataWorks 关系型数据库
DataWorks操作报错合集之同步Elasticsearch数据报错:Cat response did not contain a JSON Array,是什么导致的
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
4月前
|
监控 搜索推荐 Go
万字详解!在 Go 语言中操作 ElasticSearch
本文档通过示例代码详细介绍了如何在Go应用中使用`olivere/elastic`库,涵盖了从连接到Elasticsearch、管理索引到执行复杂查询的整个流程。
99 0
|
6月前
|
Kubernetes 关系型数据库 MySQL
实时计算 Flink版产品使用合集之在Kubernetes(k8s)中同步MySQL变更到Elasticsearch该怎么操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
安全 Java API
SpringBoot 实现 elasticsearch 索引操作(RestHighLevelClient 的应用)
SpringBoot 实现 elasticsearch 索引操作(RestHighLevelClient 的应用)
92 1
|
6月前
|
自然语言处理 Java 索引
SpringBoot 实现 elasticsearch 查询操作(RestHighLevelClient 的案例实战)
SpringBoot 实现 elasticsearch 查询操作(RestHighLevelClient 的案例实战)
253 1
|
6月前
|
Java API
Java操作elasticsearch
Java操作elasticsearch
43 0
|
6月前
|
存储 JSON Go
ElasticSearch的HTTP操作 和Go客户端
【2月更文挑战第13天】ElasticSearch的HTTP操作 和Go客户端操作
146 0
|
6月前
|
Java 索引
ElasticSearch DSL操作
ElasticSearch DSL操作
112 1
|
6月前
|
SQL
ElasticSearch Script操作数据
ElasticSearch Script操作数据
192 0